Simulate the behaviour of a grid connected PV system under different
conditions of irradiance and temperature. This function is used by the
prodGCPV
function.
fProd(inclin, module, generator, inverter, effSys)
list of numeric values with information about the PV module,
Vocn
open-circuit voltage of the module at Standard Test Conditions (default value 57.6 volts.)
Iscn
short circuit current of the module at Standard Test Conditions (default value 4.7 amperes.)
Vmn
maximum power point voltage of the module at Standard Test Conditions (default value 46.08 amperes.)
Imn
Maximum power current of the module at Standard Test Conditions (default value 4.35 amperes.)
Ncs
number of cells in series inside the module (default value 96)
Ncp
number of cells in parallel inside the module (default value 1)
CoefVT
coefficient of decrement of voltage of each cell with the temperature (default value 0.0023 volts per celsius degree)
TONC
nominal operational cell temperature, celsius degree (default value 47).
list of numeric values with information about the generator,
Nms
number of modules in series (default value 12)
Nmp
number of modules in parallel (default value 11)
list of numeric values with information about the DC/AC inverter,
Ki
vector of three values, coefficients of the efficiency curve of the inverter (default c(0.01, 0.025, 0.05)), or a matrix of nine values (3x3) if there is dependence with the voltage (see references).
Pinv
nominal inverter power (W) (default value 25000 watts.)
Vmin, Vmax
minimum and maximum voltages of the MPP range of the inverter (default values 420 and 750 volts)
Gumb
minimum irradiance for the inverter to start (W/m<U+00B2>) (default value 20 W/m<U+00B2>)
list of numeric values with information about the system losses,
ModQual
average tolerance of the set of modules (%), default value is 3
ModDisp
module parameter disperssion losses (%), default value is 2
OhmDC
Joule losses due to the DC wiring (%), default value is 1.5
OhmAC
Joule losses due to the AC wiring (%), default value is 1.5
MPP
average error of the MPP algorithm of the inverter (%), default value is 1
TrafoMT
losses due to the MT transformer (%), default value is 1
Disp
losses due to stops of the system (%), default value is 0.5
If inclin
is zoo
or Gef
object, the result
is a zoo
object with these components (if inclin
is a data.frame
the result is also a data.frame
with these same components):
cell temperature, \(^{\circ}{\rm C}\).
open circuit voltage, short circuit current, MPP voltage and current, respectively, in the conditions of irradiance and temperature provided by Inclin
voltage and current at the input of the inverter. If no voltage limitation occurs (according to the values of inverter$Vmax
and inverter$Vmin
), their values are identical to Vmpp
and Impp
. If the limit values are reached a warning is produced
power at the input of the inverter, W
power at the output of the inverter, W
efficiency of the inverter
Jantsch, M., Schmidt, H. y Schmid, J.: Results on the concerted action on power conditioning and control. 11th European photovoltaic Solar Energy Conference, 1992.
Baumgartner, F. P., Schmidt, H., Burger, B., Br<U+00FC>ndlinger, R., Haeberlin, H. and Zehner, M.: Status and Relevance of the DC Voltage Dependency of the Inverter Efficiency. 22nd European Photovoltaic Solar Energy Conference, 2007.
Alonso Garcia, M. C.: Caracterizaci<U+00F3>n y modelado de asociaciones de dispositivos fotovoltaicos. PhD Thesis, CIEMAT, 2005.
Perpi<U+00F1><U+00E1>n, O, Energ<U+00ED>a Solar Fotovoltaica, 2015. (https://oscarperpinan.github.io/esf/)
Perpi<U+00F1><U+00E1>n, O. (2012), "solaR: Solar Radiation and Photovoltaic Systems with R", Journal of Statistical Software, 50(9), 1-32, 10.18637/jss.v050.i09
# NOT RUN {
inclin = data.frame(Gef = c(200,400,600,800,1000),Ta = 25)
#using default values
fProd(inclin)
#Using a matrix for Ki (voltage dependence)
inv1 <- list(Ki = rbind(c(-0.00019917, 7.513e-06, -5.4183e-09),
c(0.00806, -4.161e-06, 2.859e-08),
c(0.02118, 3.4002e-05, -4.8967e-08)))
fProd(inclin, inverter = inv1)
#Voltage limits of the inverter
inclin = data.frame(Gef = 800,Ta = 30)
gen1 = list(Nms = 10, Nmp = 11)
prod = fProd(inclin,generator = gen1)
print(prod)
with(prod, Vdc * Idc / (Vmpp * Impp))
# }
Run the code above in your browser using DataLab