# NOT RUN {
#### =================================== ####
#### ===== Augmented Block Design 1 ==== ####
#### =================================== ####
data(ExpDesigns)
data1 <- ExpDesigns$au1
head(data1)
## response variable: "yield"
## check indicator: "entryc" ('nc' for all unreplicated, but personal.name for checks)
## blocking factor: "block"
## treatments, personal names for replicated and non-replicated: "trt"
## check no check indicator: "new"
mix1 <- mmer2(yield~entryc, random=~block+trt, data=data1)
summary(mix1)
# ## compare raw unreplicated measure with adjusted blup
# library(plyr)
# avers <- ddply(data1, .(trt), summarize,mean = round(mean(yield), 2))
# plot(avers$mean[-c(1:4)], mix1$u.hat$trt[-c(1:4),1],ylab="BLUP",xlab="Raw",
# pch=20, cex=2, col="blue")
# ## if you have row and column information you can see the design
# library(agridat)
# data1$row <- c(sample(1:7),sample(1:6),sample(1:7))
# data1$col <- c(1:3)[data1$block]
# d1 <- desplot(yield ~ row*col, data1, main="ABD1",
# text=trt,strip.cex=3, cex=1)
# print(d1)
#### =================================== ####
#### ===== Augmented Block Design 2 ==== ####
#### =================================== ####
data(ExpDesigns)
data2 <- ExpDesigns$au2
head(data2)
## response variable: "TSW"
## check indicator: "entryc"
## blocking factor: "Block"
## treatments, replicated and non-replicated: "Entry"
## check no check indicator: "new"
## this is also known as Federer's unreplicated design
mix2<- mmer2(TSW ~ entryc, random=~Block+Entry, data=data2)
summary(mix2)
#### =================================== ####
#### ===== Incomplete block design ==== ####
#### =================================== ####
data(ExpDesigns)
data.ibd <- ExpDesigns$ibd$book
head(data.ibd)
ExpDesigns$ibd$sketch
## response variable: "yield"
## 2 replications (r)
## 30 genotypes (trt)
## 10 incomplete blocks (s) with 3 trts each (k)
## design was an alpha design
## agricolae::design.alpha(trt=paste("gen",1:30,sep=""),k=3,r=2,seed=5)$sketch
mix.ibd <- mmer2(yield~Genotype,random=~replication+replication:block,
data=data.ibd)
summary(mix.ibd)
# rownames(a)[1] <-"geno1"
#a[-1] <- a[-1]+a[1]
#plot(density(mix.ibd$beta.hat))
## map of the field
# library(agridat)
# data.ibd$block <- as.numeric(as.character(data.ibd$block))
# data.ibd$cols <- as.numeric(as.character(data.ibd$cols))
# d1 <- desplot(yield ~ block*cols, data.ibd, main="IBD",
# text=Genotype,strip.cex=3, cex=1)
# print(d1)
#### =================================== ####
#### ======= Split Plot Design ======== ####
#### =================================== ####
data(ExpDesigns)
data.spd <- ExpDesigns$spd
head(data.spd)
## response variable: "yield"
## 3 blocks or reps (r)
## 2 whole plot treatment (A)
## 3 small plot treatments (B)
##
## i.e BLOCK 1
##[]======================[]
##[] A1(B1) A1(B2) A1(B3) []
##[] A2(B1) A2(B2) A2(B3) []
##[]======================[]
##
## more replication in whole plot treatments (A)
## less replication in sub plot treatments (B)
# mix.split <- mmer2(yield ~block + A + B ,random=~ A:B, data=data.spd)
# summary(mix.split)
#### =================================== ####
#### ==== Split-Split Plot Design ===== ####
#### =================================== ####
data(ExpDesigns)
data.sspd <- ExpDesigns$sspd
head(data.sspd)
## response variable: "yield"
## 5 levels of nitrogen (N) main plot
## 3 levels of management (M) sub-plot
## 3 varieties (B) sub-sub-plot
##
## i.e BLOCK 1
##[]==================================[]
##[] N1(M1(V1)) N1(M2(V1)) N1(M3(V1)) []
##[] N2(M1(V1)) N2(M2(V1)) N2(M3(V1)) []
##[] N3(M1(V1)) N3(M2(V1)) N3(M3(V1)) []
##[] N4(M1(V1)) N4(M2(V1)) N4(M3(V1)) []
##[] N5(M1(V1)) N5(M2(V1)) N5(M3(V1)) []
##[]==================================[]
##
head(data.sspd)
# mix.sspd <- mmer2(yield ~1,random=~ block + nitrogen + management +
# variety + nitrogen:management + variety:nitrogen +
# variety:management + variety:nitrogen:management,
# data=data.sspd)
# summary(mix.sspd)
#### =================================== ####
#### ======= Latin Square Design ====== ####
#### =================================== ####
data(ExpDesigns)
data.lsd <- ExpDesigns$lsd
head(data.lsd)
## response variable: "yield"
## 4 columns (c)
## 4 rows (r)
## 4 varieties (V)
##
## c1 c2 c3 c4
##[]=============[]
##[] V1 V4 V2 V3 [] row 1
##[] V2 V3 V4 V1 [] row 2
##[] V3 V2 V4 V1 [] row 3
##[] V4 V1 V3 V2 [] row 4
##[]=============[]
## c1 c2 c3 c4
##
# mix.lsd <- mmer2(yield ~ variety ,random=~ row + col, data=data.lsd)
# summary(mix.lsd)
# library(agridat)
# desplot(yield ~ row*col, data.lsd, main="LSD",
# strip.cex=3, cex=1, text=variety)
#### =================================== ####
#### ===== North Carolina Design I ==== ####
#### =================================== ####
data(ExpDesigns)
data.car1 <- ExpDesigns$car1
head(data.car1)
## response variable: "yield"
## male indicator: "male"
## female indicator: "female"
## replication: "rep"
## set of males: "set"
# mix.car1 <- mmer2(yield~set,random=~ set:rep + set:male
# +set:male:female + set:male:female:rep, data=data.car1)
# (suma <- summary(mix.car1))
# (Var.A <- 4*suma$var.comp.table[2,1])
# (Var.D <- 4*suma$var.comp.table[3,1] - 4*suma$var.comp.table[2,1])
#### =================================== ####
#### ===== North Carolina Design II ==== ####
#### =================================== ####
data(ExpDesigns)
data.car2 <- ExpDesigns$car2
head(data.car2)
## response variable: "yield"
## male indicator: "male"
## female indicator: "female"
## replication: "rep"
## set of males: "set"
# mix.car2 <- mmer2(yield ~ 1, random=~ set + set:rep + set:male
# + set:female + set:male:female, data=data.car2)
# (suma <- summary(mix.car2))
# (Var.Am <- 4*suma$var.comp.table[3,1])
# (Var.Af <- 4*suma$var.comp.table[4,1])
# (Var.D <- 4*suma$var.comp.table[5,1])
#### =================================== ####
#### ==== North Carolina Design III ==== ####
#### =================================== ####
data(ExpDesigns)
data.car3 <- ExpDesigns$car3
data.car3$setrep <- paste(data.car3$set,data.car3$rep,sep=":")
head(data.car3)
## response variable: "yield"
## male indicator: "male"
## female indicator: "female"
## replication: "rep"
## set of males: "set"
# mix.car3 <- mmer2(yield ~ set + setrep, random=~ set:male
# + set:female + set:male:female, data=data.car3)
# (suma <- summary(mix.car3))
# (Var.A <- 4*suma$var.comp.table[1,1]) # var males
# (Var.D <- 2*suma$var.comp.table[3,1]) # var females in males
# }
Run the code above in your browser using DataLab