####=========================================####
#### For CRAN time limitations most lines in the
#### examples are silenced with one '#' mark,
#### remove them and run the examples using
#### command + shift + C |OR| control + shift + C
####=========================================####
# data(DT_gryphon)
# DT <- DT_gryphon
# A <- A_gryphon
# P <- P_gryphon
# #### look at the data
# head(DT)
# #### fit the model with no fixed effects (intercept only)
# mix1 <- mmer(BWT~1,
# random=~vsr(ANIMAL,Gu=A),
# rcov=~units,
# data=DT)
# summary(mix1)$varcomp
#
# ## mmec uses the inverse of the relationship matrix
# Ai <- as(solve(A + diag(1e-4,ncol(A),ncol(A))), Class="dgCMatrix")
# mix1b <- mmec(BWT~1,
# random=~vsc(isc(ANIMAL),Gu=Ai),
# rcov=~units, tolParConv = 1e-5,
# data=DT)
# summary(mix1b)$varcomp
#
# #### fit the multivariate model with no fixed effects (intercept only)
# mix2 <- mmer(cbind(BWT,TARSUS)~1,
# random=~vsr(ANIMAL,Gu=A),
# rcov=~vsr(units),
# na.method.Y = "include2",
# data=DT)
# summary(mix2)
# cov2cor(mix2$sigma$`u:ANIMAL`)
# cov2cor(mix2$sigma$`u:units`)
Run the code above in your browser using DataLab