powered by
The definition used is
generate_happycat_function(dimensions, alpha = 0.125)
[integer(1)] Size of parameter space.
integer(1)
[numeric(1)] Parameter for control of groove shape.
numeric(1)
A soo_function.
soo_function
$$ f(x) = \left((x^Tx - n)^2\right)^\alpha + \frac{1}{N}\left( \frac{1}{2}x^Tx + \sum_{i=1}^n x_i \right) + \frac{1}{2}$$
H.-G. Beyer and S. Finck. HappyCat - A Simple Function Class Where Well-Known Direct Search Algorithms Do Fail. In: PPSN XII (Parallel Problem Solving from Nature), 367-376, Springer, Heidelberg, 2012.
# NOT RUN { f <- generate_happycat_function(2, 1/8) plot(f) # }
Run the code above in your browser using DataLab