Learn R Programming

soobench (version 1.9.18)

generate_happycat_function: Generator for the Happycat function.

Description

The definition used is

Usage

generate_happycat_function(dimensions, alpha = 0.125)

Arguments

dimensions

[integer(1)] Size of parameter space.

alpha

[numeric(1)] Parameter for control of groove shape.

Value

A soo_function.

Details

$$ f(x) = \left((x^Tx - n)^2\right)^\alpha + \frac{1}{N}\left( \frac{1}{2}x^Tx + \sum_{i=1}^n x_i \right) + \frac{1}{2}$$

References

H.-G. Beyer and S. Finck. HappyCat - A Simple Function Class Where Well-Known Direct Search Algorithms Do Fail. In: PPSN XII (Parallel Problem Solving from Nature), 367-376, Springer, Heidelberg, 2012.

Examples

Run this code
# NOT RUN {
f <- generate_happycat_function(2, 1/8)
plot(f)

# }

Run the code above in your browser using DataLab