data("meuse")
coordinates(meuse) <- ~x+y
data("meuse.grid")
coordinates(meuse.grid) <- ~x+y
gridded(meuse.grid) <- TRUE
i = cut(meuse.grid$dist, c(0,.25,.5,.75,1), include.lowest = TRUE)
j = sample(1:2, 3103,replace=TRUE)
if (FALSE) {
if (require(rgeos)) {
# aggregation by spatial object:
ab = gUnaryUnion(as(meuse.grid, "SpatialPolygons"), meuse.grid$part.a)
x = aggregate(meuse["zinc"], ab, mean)
spplot(x)
# aggregation of multiple variables
x = aggregate(meuse[c("zinc", "copper")], ab, mean)
spplot(x)
# aggregation by attribute, then dissolve to polygon:
x = aggregate(meuse.grid["dist"], list(i=i), mean)
spplot(x["i"])
x = aggregate(meuse.grid["dist"], list(i=i,j=j), mean)
spplot(x["dist"], col.regions=bpy.colors())
spplot(x["i"], col.regions=bpy.colors(4))
spplot(x["j"], col.regions=bpy.colors())
}
}
x = aggregate(meuse.grid["dist"], list(i=i,j=j), mean, dissolve = FALSE)
spplot(x["j"], col.regions=bpy.colors())
if (require(gstat) && require(rgeos)) {
x = idw(log(zinc)~1, meuse, meuse.grid, debug.level=0)[1]
spplot(x[1],col.regions=bpy.colors())
i = cut(x$var1.pred, seq(4, 7.5, by=.5),
include.lowest = TRUE)
# xa = aggregate(x["var1.pred"], list(i=i), mean)
# spplot(xa[1],col.regions=bpy.colors(8))
}
if (require(rgeos)) {
# Area-weighted example, using two partly overlapping grids:
gt1 = SpatialGrid(GridTopology(c(0,0), c(1,1), c(4,4)))
gt2 = SpatialGrid(GridTopology(c(-1.25,-1.25), c(1,1), c(4,4)))
# convert both to polygons; give p1 attributes to aggregate
p1 = SpatialPolygonsDataFrame(as(gt1, "SpatialPolygons"),
data.frame(v = 1:16, w=5:20, x=factor(1:16)), match.ID = FALSE)
p2 = as(gt2, "SpatialPolygons")
# plot the scene:
plot(p1, xlim = c(-2,4), ylim = c(-2,4))
plot(p2, add = TRUE, border = 'red')
i = gIntersection(p1, p2, byid = TRUE)
plot(i, add=TRUE, density = 5, col = 'blue')
# plot IDs p2:
ids.p2 = sapply(p2@polygons, function(x) slot(x, name = "ID"))
text(coordinates(p2), ids.p2)
# plot IDs i:
ids.i = sapply(i@polygons, function(x) slot(x, name = "ID"))
text(coordinates(i), ids.i, cex = .8, col = 'blue')
# compute & plot area-weighted average; will warn for the factor
#ret = aggregate(p1, p2, areaWeighted = TRUE)
#spplot(ret)
# all-factor attributes: compute area-dominant factor level:
#ret = aggregate(p1["x"], p2, areaWeighted = TRUE)
#spplot(ret)
}
Run the code above in your browser using DataLab