Learn R Programming

spData (version 2.3.3)

eire: Eire data sets

Description

The Eire data set has been converted to shapefile format and placed in the etc/shapes directory. The initial data objects are now stored as a SpatialPolygonsDataFrame object, from which the contiguity neighbour list is recreated. For purposes of record, the original data set is retained. The eire.df data frame has 26 rows and 9 columns. In addition, polygons of the 26 counties are provided as a multipart polylist in eire.polys.utm (coordinates in km, projection UTM zone 30). Their centroids are in eire.coords.utm. The original Cliff and Ord binary contiguities are in eire.nb.

Arguments

Format

This data frame contains the following columns:

  • A: Percentage of sample with blood group A

  • towns: Towns/unit area

  • pale: Beyond the Pale 0, within the Pale 1

  • size: number of blood type samples

  • ROADACC: arterial road network accessibility in 1961

  • OWNCONS: percentage in value terms of gross agricultural output of each county consumed by itself

  • POPCHG: 1961 population as percentage of 1926

  • RETSALE: value of retail sales British Pound000

  • INCOME: total personal income British Pound000

  • names: County names

Examples

Run this code
# \donttest{
library(spdep)
eire <- sf::st_read(system.file("shapes/eire.gpkg", package="spData")[1])
eire.nb <- poly2nb(eire)

# Eire physical anthropology blood group data
summary(eire$A)
brks <- round(fivenum(eire$A), digits=2)
cols <- rev(heat.colors(4))
plot(eire, col=cols[findInterval(eire$A, brks, all.inside=TRUE)])
title(main="Percentage with blood group A in Eire")
legend(x=c(-50, 70), y=c(6120, 6050), 
  c("under 27.91", "27.91 - 29.26", "29.26 - 31.02", "over 31.02"),
  fill=cols, bty="n")

plot(st_geometry(eire))
plot(eire.nb, st_geometry(eire), add=TRUE)

lA <- lag.listw(nb2listw(eire.nb), eire$A)
summary(lA)
moran.test(eire$A, nb2listw(eire.nb))
geary.test(eire$A, nb2listw(eire.nb))
cor(lA, eire$A)
moran.plot(eire$A, nb2listw(eire.nb), labels=eire$names)
A.lm <- lm(A ~ towns + pale, data=eire)
summary(A.lm)
res <- residuals(A.lm)
brks <- c(min(res),-2,-1,0,1,2,max(res))
cols <- rev(cm.colors(6))

plot(eire, col=cols[findInterval(res, brks, all.inside=TRUE)])
title(main="Regression residuals")
legend(x=c(-50, 70), y=c(6120, 6050),
  legend=c("under -2", "-2 - -1", "-1 - 0", "0 - 1", "1 - 2", "over 2"),
  fill=cols, bty="n")

lm.morantest(A.lm, nb2listw(eire.nb))
lm.morantest.sad(A.lm, nb2listw(eire.nb))
lm.LMtests(A.lm, nb2listw(eire.nb), test="LMerr")

# Eire agricultural data
brks <- round(fivenum(eire$OWNCONS), digits=2)
cols <- grey(4:1/5)
plot(eire, col=cols[findInterval(eire$OWNCONS, brks, all.inside=TRUE)])
title(main="Percentage own consumption of agricultural produce")
legend(x=c(-50, 70), y=c(6120, 6050),
  legend=c("under 9", "9 - 12.2", "12.2 - 19", "over 19"), fill=cols, bty="n")

moran.plot(eire$OWNCONS, nb2listw(eire.nb))
moran.test(eire$OWNCONS, nb2listw(eire.nb))
e.lm <- lm(OWNCONS ~ ROADACC, data=eire)
res <- residuals(e.lm)
brks <- c(min(res),-2,-1,0,1,2,max(res))
cols <- rev(cm.colors(6))
plot(eire, col=cols[findInterval(res, brks, all.inside=TRUE)])
title(main="Regression residuals")
legend(x=c(-50, 70), y=c(6120, 6050),
  legend=c("under -2", "-2 - -1", "-1 - 0", "0 - 1", "1 - 2", "over 2"),
  fill=cm.colors(6), bty="n")

lm.morantest(e.lm, nb2listw(eire.nb))
lm.morantest.sad(e.lm, nb2listw(eire.nb))
lm.LMtests(e.lm, nb2listw(eire.nb), test="LMerr")
print(localmoran.sad(e.lm, eire.nb, select=seq(along=eire.nb)))
# }

Run the code above in your browser using DataLab