Learn R Programming

spData (version 2.3.4)

used.cars: US 1960 used car prices

Description

The used.cars data frame has 48 rows and 2 columns. The data set includes a neighbours list for the 48 states excluding DC from poly2nb().

Usage

used.cars

Arguments

Format

This data frame contains the following columns:

  • tax.charges: taxes and delivery charges for 1955-9 new cars

  • price.1960: 1960 used car prices by state

References

Hepple, L. W. 1976 A maximum likelihood model for econometric estimation with spatial series, in Masser, I (ed) Theory and practice in regional science, London: Pion, pp. 90-104.

Examples

Run this code
if (requireNamespace("spdep", quietly = TRUE)) {
  library(spdep)
  data(used.cars)
  moran.test(used.cars$price.1960, nb2listw(usa48.nb))
  moran.plot(used.cars$price.1960, nb2listw(usa48.nb),
           labels=rownames(used.cars))
  uc.lm <- lm(price.1960 ~ tax.charges, data=used.cars)
  summary(uc.lm)

  lm.morantest(uc.lm, nb2listw(usa48.nb))
  lm.morantest.sad(uc.lm, nb2listw(usa48.nb))
  lm.LMtests(uc.lm, nb2listw(usa48.nb))
# \donttest{
  if (requireNamespace("spatialreg", quietly = TRUE)) {
    library(spatialreg)
    uc.err <- errorsarlm(price.1960 ~ tax.charges, data=used.cars,
                       nb2listw(usa48.nb), tol.solve=1.0e-13, 
                       control=list(tol.opt=.Machine$double.eps^0.3))
    summary(uc.err)
    uc.lag <- lagsarlm(price.1960 ~ tax.charges, data=used.cars,
                     nb2listw(usa48.nb), tol.solve=1.0e-13, 
                     control=list(tol.opt=.Machine$double.eps^0.3))
    summary(uc.lag)
    uc.lag1 <- lagsarlm(price.1960 ~ 1, data=used.cars,
                      nb2listw(usa48.nb), tol.solve=1.0e-13, 
                      control=list(tol.opt=.Machine$double.eps^0.3))
    summary(uc.lag1)
    uc.err1 <- errorsarlm(price.1960 ~ 1, data=used.cars,
                        nb2listw(usa48.nb), tol.solve=1.0e-13, 
                        control=list(tol.opt=.Machine$double.eps^0.3),
                        Durbin=FALSE)
    summary(uc.err1)
  }
# }
}

Run the code above in your browser using DataLab