The Cauchy family of correlation functions is useful to describe spatial processes with power-law decrease of correlation at long distance. It is valid for Euclidean distances in spaces of any dimension, and for great-circle distances on spheres of any dimension. It has a scale parameter (rho
, as in the Matérn correlation function), a shape
(or “smoothness”, Gneiting 2013) parameter, and a long
-memory dep
endence (or, more abstractly, “shape”; Gneiting 2013) parameter (Gneiting and Schlater 2004). The present implementation also accepts a Nugget
parameter. The family can be invoked in two ways. First, the CauchyCorr
function evaluates correlations, using distances as input. Second, a term of the form Cauchy(1|
<...>)
in a formula
specifies a random effect with Cauchy correlation function, using coordinates found in a data frame as input. In the latter case, the correlations between realizations of the random effect for any two observations in the data will be the value of the Cauchy function at the scaled distance between coordinates specified in <...>, using “+” as separator (e.g., Cauchy(1|longitude+latitude)
). A syntax of the form Cauchy(1|longitude+latitude %in% grp)
can be used to specify a Cauchy random effect with independent realizations for each level of the grouping variable grp
.