data(testdata)
spmatrix <- data2mat(testdata)
result <- sp.pair(spmatrix)
## Check the legend for 0.00 to 0.33 (Unwanted label)
plotlowertri(result$Pearson, int = 0.5, cex=1.5)
title("Pearson Correlation Lower Matrix Plot")
## Change the size of points and reset the intervals.
## Warning: The lower matrix plot illustrating Pearson
## Correlation between each pair of species. Note the
## triangle didn't appeared in the plots, but have been
## added to the legend. This is due to the distribution
## of data. Be careful in selection of intervals.
plotlowertri(result$Pearson, int = 0.5, cex=1.5,
interval = 4, pchlist = c(19, 17, 15, 1, 5), size = TRUE)
title("Pearson Correlation Lower Matrix Plot")
## "Pure" dots, may have to add legend manually...
plotlowertri(result$Pearson, int = 0.5, cex=2.5,
interval = 4, pchlist = rep(19, 5), size = TRUE,
show.legend = FALSE)
title("Pearson Correlation Lower Matrix Plot")
## Using BCI data
library(vegan)
data(BCI)
## select the top 30 species according to relative frequency.
sub <- sub.sp.matrix(BCI, common = 30)
## Original
plotlowertri(cor(sub))
## Change size
plotlowertri(cor(sub), size = TRUE, cex = 3)
## Set the digits to 1
plotlowertri(cor(sub), size = TRUE, cex = 3, digits = 1,
ncex = 0.7)
Run the code above in your browser using DataLab