Learn R Programming

sparcl (version 1.0.4)

HierarchicalSparseCluster.wrapper: A wrapper for the hierarchical sparse clustering algorithm

Description

A wrapper for HierarchicalSparseCluster which reads in the data in GCT file format, and then automatically chooses the optimal tuning parameter value using HierarchicalSparseCluster.permute if not specified.

Usage

HierarchicalSparseCluster.wrapper(file,  method=c("average", "complete", "single",
 "centroid"),
wbound=NULL, silent=FALSE, cluster.features=FALSE,
method.features=c("average", "complete",
"single","centroid"),output.cluster.files=TRUE,outputfile.prefix=NULL,maxnumgenes=5000,
standardize.arrays=TRUE)

Arguments

file

A GCT filename in the working directory containing the data to be clustered.

method

The type of linkage to use in the hierarchical clustering - "single", "complete", "average", or "centroid".

wbound

The L1 bound on w to use; this is the tuning parameter for sparse hierarchical clustering. If NULL, then it will be chosen via HierarchicalSparseCluster.permute.

silent

Print out progress?

cluster.features

Is a clustering for the features with non-zero weights also desired? Default is FALSE.

method.features

If cluster.features is TRUE, then the type of linkage used to cluster the features with non-zero weights: one of "single", "complete", "average", or "centroid".

output.cluster.files

Should files containing the clustering be output? Default is TRUE.

outputfile.prefix

The prefix for the output files. If NULL, then the prefix of the input file is used.

maxnumgenes

Limit the analysis to some number of genes with highest marginal variance, for computational reasons. This is recommended when the number of genes is very large. If NULL, then all genes are used.

standardize.arrays

Should the arrays first be standardized? Default is TRUE.

Value

hc

The output of a call to "hclust", giving the results of hierarchical sparse clustering.

ws

The p-vector of feature weights.

u

The nxn dissimilarity matrix passed into hclust, of the form $(sum_j w_j d_ii'j)_ii'$.

dists

The (n*n)xp dissimilarity matrix for the data matrix x. This is useful if additional calls to HierarchicalSparseCluster will be made.

References

Witten and Tibshirani (2009) A framework for feature selection in clustering.

See Also

HierarchicalSparseCluster.permute,KMeansSparseCluster,KMeansSparseCluster.permute