Read a tabular data file into a Spark DataFrame.
spark_read_csv(
sc,
name = NULL,
path = name,
header = TRUE,
columns = NULL,
infer_schema = is.null(columns),
delimiter = ",",
quote = "\"",
escape = "\\",
charset = "UTF-8",
null_value = NULL,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
...
)
A spark_connection
.
The name to assign to the newly generated table.
The path to the file. Needs to be accessible from the cluster. Supports the "hdfs://", "s3a://" and "file://" protocols.
Boolean; should the first row of data be used as a header?
Defaults to TRUE
.
A vector of column names or a named vector of column types.
If specified, the elements can be "binary"
for BinaryType
,
"boolean"
for BooleanType
, "byte"
for ByteType
,
"integer"
for IntegerType
, "integer64"
for LongType
,
"double"
for DoubleType
, "character"
for StringType
,
"timestamp"
for TimestampType
and "date"
for DateType
.
Boolean; should column types be automatically inferred?
Requires one extra pass over the data. Defaults to is.null(columns)
.
The character used to delimit each column. Defaults to ','.
The character used as a quote. Defaults to '"'.
The character used to escape other characters. Defaults to '\'.
The character set. Defaults to "UTF-8".
The character to use for null, or missing, values. Defaults to NULL
.
A list of strings with additional options.
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)
Boolean; overwrite the table with the given name if it already exists?
Optional arguments; currently unused.
You can read data from HDFS (hdfs://
), S3 (s3a://
),
as well as the local file system (file://
).
When header
is FALSE
, the column names are generated with a
V
prefix; e.g. V1, V2, ...
.
Other Spark serialization routines:
collect_from_rds()
,
spark_insert_table()
,
spark_load_table()
,
spark_read_avro()
,
spark_read_binary()
,
spark_read_delta()
,
spark_read_image()
,
spark_read_jdbc()
,
spark_read_json()
,
spark_read_libsvm()
,
spark_read_orc()
,
spark_read_parquet()
,
spark_read_source()
,
spark_read_table()
,
spark_read_text()
,
spark_read()
,
spark_save_table()
,
spark_write_avro()
,
spark_write_csv()
,
spark_write_delta()
,
spark_write_jdbc()
,
spark_write_json()
,
spark_write_orc()
,
spark_write_parquet()
,
spark_write_source()
,
spark_write_table()
,
spark_write_text()