Extracts a vocabulary from document collections.
ft_count_vectorizer(
x,
input_col = NULL,
output_col = NULL,
binary = FALSE,
min_df = 1,
min_tf = 1,
vocab_size = 2^18,
uid = random_string("count_vectorizer_"),
...
)ml_vocabulary(model)
A spark_connection
, ml_pipeline
, or a tbl_spark
.
The name of the input column.
The name of the output column.
Binary toggle to control the output vector values.
If TRUE
, all nonzero counts (after min_tf
filter applied)
are set to 1. This is useful for discrete probabilistic models that
model binary events rather than integer counts. Default: FALSE
Specifies the minimum number of different documents a term must appear in to be included in the vocabulary. If this is an integer greater than or equal to 1, this specifies the number of documents the term must appear in; if this is a double in [0,1), then this specifies the fraction of documents. Default: 1.
Filter to ignore rare words in a document. For each document, terms with frequency/count less than the given threshold are ignored. If this is an integer greater than or equal to 1, then this specifies a count (of times the term must appear in the document); if this is a double in [0,1), then this specifies a fraction (out of the document's token count). Default: 1.
Build a vocabulary that only considers the top
vocab_size
terms ordered by term frequency across the corpus.
Default: 2^18
.
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
A ml_count_vectorizer_model
.
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns a ml_transformer
,
a ml_estimator
, or one of their subclasses. The object contains a pointer to
a Spark Transformer
or Estimator
object and can be used to compose
Pipeline
objects.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the transformer or estimator appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a transformer is constructed then
immediately applied to the input tbl_spark
, returning a tbl_spark
ml_vocabulary()
returns a vector of vocabulary built.
In the case where x
is a tbl_spark
, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x
, returning a tbl_spark
.
See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder_estimator()
,
ft_one_hot_encoder()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()