Learn R Programming

sparklyr (version 1.7.1)

ft_robust_scaler: Feature Transformation -- RobustScaler (Estimator)

Description

RobustScaler removes the median and scales the data according to the quantile range. The quantile range is by default IQR (Interquartile Range, quantile range between the 1st quartile = 25th quantile and the 3rd quartile = 75th quantile) but can be configured. Centering and scaling happen independently on each feature by computing the relevant statistics on the samples in the training set. Median and quantile range are then stored to be used on later data using the transform method. Note that missing values are ignored in the computation of medians and ranges.

Usage

ft_robust_scaler(
  x,
  input_col = NULL,
  output_col = NULL,
  lower = 0.25,
  upper = 0.75,
  with_centering = TRUE,
  with_scaling = TRUE,
  relative_error = 0.001,
  uid = random_string("ft_robust_scaler_"),
  ...
)

Arguments

x

A spark_connection, ml_pipeline, or a tbl_spark.

input_col

The name of the input column.

output_col

The name of the output column.

lower

Lower quantile to calculate quantile range.

upper

Upper quantile to calculate quantile range.

with_centering

Whether to center data with median.

with_scaling

Whether to scale the data to quantile range.

relative_error

The target relative error for quantile computation.

uid

A character string used to uniquely identify the feature transformer.

...

Optional arguments; currently unused.

Value

The object returned depends on the class of x.

  • spark_connection: When x is a spark_connection, the function returns a ml_transformer, a ml_estimator, or one of their subclasses. The object contains a pointer to a Spark Transformer or Estimator object and can be used to compose Pipeline objects.

  • ml_pipeline: When x is a ml_pipeline, the function returns a ml_pipeline with the transformer or estimator appended to the pipeline.

  • tbl_spark: When x is a tbl_spark, a transformer is constructed then immediately applied to the input tbl_spark, returning a tbl_spark

Details

In the case where x is a tbl_spark, the estimator fits against x to obtain a transformer, which is then immediately used to transform x, returning a tbl_spark.

See Also

See http://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.

Other feature transformers: ft_binarizer(), ft_bucketizer(), ft_chisq_selector(), ft_count_vectorizer(), ft_dct(), ft_elementwise_product(), ft_feature_hasher(), ft_hashing_tf(), ft_idf(), ft_imputer(), ft_index_to_string(), ft_interaction(), ft_lsh, ft_max_abs_scaler(), ft_min_max_scaler(), ft_ngram(), ft_normalizer(), ft_one_hot_encoder_estimator(), ft_one_hot_encoder(), ft_pca(), ft_polynomial_expansion(), ft_quantile_discretizer(), ft_r_formula(), ft_regex_tokenizer(), ft_sql_transformer(), ft_standard_scaler(), ft_stop_words_remover(), ft_string_indexer(), ft_tokenizer(), ft_vector_assembler(), ft_vector_indexer(), ft_vector_slicer(), ft_word2vec()