Read from a generic source into a Spark DataFrame.
spark_read_source(
sc,
name = NULL,
path = name,
source,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
...
)
A spark_connection
.
The name to assign to the newly generated table.
The path to the file. Needs to be accessible from the cluster. Supports the "hdfs://", "s3a://" and "file://" protocols.
A data source capable of reading data.
A list of strings with additional options. See http://spark.apache.org/docs/latest/sql-programming-guide.html#configuration.
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)
Boolean; overwrite the table with the given name if it already exists?
A vector of column names or a named vector of column types.
If specified, the elements can be "binary"
for BinaryType
,
"boolean"
for BooleanType
, "byte"
for ByteType
,
"integer"
for IntegerType
, "integer64"
for LongType
,
"double"
for DoubleType
, "character"
for StringType
,
"timestamp"
for TimestampType
and "date"
for DateType
.
Optional arguments; currently unused.
Other Spark serialization routines:
collect_from_rds()
,
spark_load_table()
,
spark_read_avro()
,
spark_read_binary()
,
spark_read_csv()
,
spark_read_delta()
,
spark_read_image()
,
spark_read_jdbc()
,
spark_read_json()
,
spark_read_libsvm()
,
spark_read_orc()
,
spark_read_parquet()
,
spark_read_table()
,
spark_read_text()
,
spark_read()
,
spark_save_table()
,
spark_write_avro()
,
spark_write_csv()
,
spark_write_delta()
,
spark_write_jdbc()
,
spark_write_json()
,
spark_write_orc()
,
spark_write_parquet()
,
spark_write_source()
,
spark_write_table()
,
spark_write_text()