Currently implemented using parallelized pool adjacent violators algorithm. Only univariate (single feature) algorithm supported.
ml_isotonic_regression(
x,
formula = NULL,
feature_index = 0,
isotonic = TRUE,
weight_col = NULL,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("isotonic_regression_"),
...
)
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns an instance of a ml_estimator
object. The object contains a pointer to
a Spark Predictor
object and can be used to compose
Pipeline
objects.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the predictor appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a predictor is constructed then
immediately fit with the input tbl_spark
, returning a prediction model.
tbl_spark
, with formula
: specified When formula
is specified, the input tbl_spark
is first transformed using a
RFormula
transformer before being fit by
the predictor. The object returned in this case is a ml_model
which is a
wrapper of a ml_pipeline_model
.
A spark_connection
, ml_pipeline
, or a tbl_spark
.
Used when x
is a tbl_spark
. R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details.
Index of the feature if features_col
is a vector column (default: 0), no effect otherwise.
Whether the output sequence should be isotonic/increasing (true) or antitonic/decreasing (false). Default: true
The name of the column to use as weights for the model fit.
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula
.
Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula
.
Prediction column name.
A character string used to uniquely identify the ML estimator.
Optional arguments; see Details.
When x
is a tbl_spark
and formula
(alternatively, response
and features
) is specified, the function returns a ml_model
object wrapping a ml_pipeline_model
which contains data pre-processing transformers, the ML predictor, and, for classification models, a post-processing transformer that converts predictions into class labels. For classification, an optional argument predicted_label_col
(defaults to "predicted_label"
) can be used to specify the name of the predicted label column. In addition to the fitted ml_pipeline_model
, ml_model
objects also contain a ml_pipeline
object where the ML predictor stage is an estimator ready to be fit against data. This is utilized by ml_save
with type = "pipeline"
to faciliate model refresh workflows.
See https://spark.apache.org/docs/latest/ml-classification-regression.html for more information on the set of supervised learning algorithms.
Other ml algorithms:
ml_aft_survival_regression()
,
ml_decision_tree_classifier()
,
ml_gbt_classifier()
,
ml_generalized_linear_regression()
,
ml_linear_regression()
,
ml_linear_svc()
,
ml_logistic_regression()
,
ml_multilayer_perceptron_classifier()
,
ml_naive_bayes()
,
ml_one_vs_rest()
,
ml_random_forest_classifier()
if (FALSE) {
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
partitions <- iris_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
iris_training <- partitions$training
iris_test <- partitions$test
iso_res <- iris_tbl %>%
ml_isotonic_regression(Petal_Length ~ Petal_Width)
pred <- ml_predict(iso_res, iris_test)
pred
}
Run the code above in your browser using DataLab