PCA trains a model to project vectors to a lower dimensional space of the top k principal components.
ft_pca(
x,
input_col = NULL,
output_col = NULL,
k = NULL,
uid = random_string("pca_"),
...
)ml_pca(x, features = tbl_vars(x), k = length(features), pc_prefix = "PC", ...)
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns a ml_transformer
,
a ml_estimator
, or one of their subclasses. The object contains a pointer to
a Spark Transformer
or Estimator
object and can be used to compose
Pipeline
objects.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the transformer or estimator appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a transformer is constructed then
immediately applied to the input tbl_spark
, returning a tbl_spark
A spark_connection
, ml_pipeline
, or a tbl_spark
.
The name of the input column.
The name of the output column.
The number of principal components
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
The columns to use in the principal components
analysis. Defaults to all columns in x
.
Length-one character vector used to prepend names of components.
In the case where x
is a tbl_spark
, the estimator fits against x
to obtain a transformer, which is then immediately used to transform x
, returning a tbl_spark
.
ml_pca()
is a wrapper around ft_pca()
that returns a
ml_model
.
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder_estimator()
,
ft_one_hot_encoder()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()
if (FALSE) {
library(dplyr)
sc <- spark_connect(master = "local")
iris_tbl <- sdf_copy_to(sc, iris, name = "iris_tbl", overwrite = TRUE)
iris_tbl %>%
select(-Species) %>%
ml_pca(k = 2)
}
Run the code above in your browser using DataLab