Combine multiple vectors into a single row-vector; that is, where each row element of the newly generated column is a vector formed by concatenating each row element from the specified input columns.
ft_vector_assembler(
x,
input_cols = NULL,
output_col = NULL,
uid = random_string("vector_assembler_"),
...
)
The object returned depends on the class of x
.
spark_connection
: When x
is a spark_connection
, the function returns a ml_transformer
,
a ml_estimator
, or one of their subclasses. The object contains a pointer to
a Spark Transformer
or Estimator
object and can be used to compose
Pipeline
objects.
ml_pipeline
: When x
is a ml_pipeline
, the function returns a ml_pipeline
with
the transformer or estimator appended to the pipeline.
tbl_spark
: When x
is a tbl_spark
, a transformer is constructed then
immediately applied to the input tbl_spark
, returning a tbl_spark
A spark_connection
, ml_pipeline
, or a tbl_spark
.
The names of the input columns
The name of the output column.
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
See https://spark.apache.org/docs/latest/ml-features.html for more information on the set of transformations available for DataFrame columns in Spark.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder_estimator()
,
ft_one_hot_encoder()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()