Functions for developers writing extensions for Spark ML. These functions are constructors for `ml_model` objects that are returned when using the formula interface.
ml_supervised_pipeline(predictor, dataset, formula, features_col, label_col)ml_clustering_pipeline(predictor, dataset, formula, features_col)
ml_construct_model_supervised(
constructor,
predictor,
formula,
dataset,
features_col,
label_col,
...
)
ml_construct_model_clustering(
constructor,
predictor,
formula,
dataset,
features_col,
...
)
new_ml_model_prediction(
pipeline_model,
formula,
dataset,
label_col,
features_col,
...,
class = character()
)
new_ml_model(pipeline_model, formula, dataset, ..., class = character())
new_ml_model_classification(
pipeline_model,
formula,
dataset,
label_col,
features_col,
predicted_label_col,
...,
class = character()
)
new_ml_model_regression(
pipeline_model,
formula,
dataset,
label_col,
features_col,
...,
class = character()
)
new_ml_model_clustering(
pipeline_model,
formula,
dataset,
features_col,
...,
class = character()
)
The pipeline stage corresponding to the ML algorithm.
The training dataset.
The formula used for data preprocessing
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula
.
Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula
.
The constructor function for the `ml_model`.
The pipeline model object returned by `ml_supervised_pipeline()`.
Name of the subclass.