Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a hypergeometric distribution.
sdf_rhyper(
sc,
nn,
m,
n,
k,
num_partitions = NULL,
seed = NULL,
output_col = "x"
)
A Spark connection.
Sample Size.
The number of successes among the population.
The number of failures among the population.
The number of draws.
Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster).
Random seed (default: a random long integer).
Name of the output column containing sample values (default: "x").
Other Spark statistical routines:
sdf_rbeta()
,
sdf_rbinom()
,
sdf_rcauchy()
,
sdf_rchisq()
,
sdf_rexp()
,
sdf_rgamma()
,
sdf_rgeom()
,
sdf_rlnorm()
,
sdf_rnorm()
,
sdf_rpois()
,
sdf_rt()
,
sdf_runif()
,
sdf_rweibull()