Generator method for creating a single-column Spark dataframes comprised of i.i.d. samples from a t-distribution.
sdf_rt(sc, n, df, num_partitions = NULL, seed = NULL, output_col = "x")
A Spark connection.
Sample Size (default: 1000).
Degrees of freedom (> 0, maybe non-integer).
Number of partitions in the resulting Spark dataframe (default: default parallelism of the Spark cluster).
Random seed (default: a random long integer).
Name of the output column containing sample values (default: "x").
Other Spark statistical routines:
sdf_rbeta()
,
sdf_rbinom()
,
sdf_rcauchy()
,
sdf_rchisq()
,
sdf_rexp()
,
sdf_rgamma()
,
sdf_rgeom()
,
sdf_rhyper()
,
sdf_rlnorm()
,
sdf_rnorm()
,
sdf_rpois()
,
sdf_runif()
,
sdf_rweibull()