Read a table serialized in the JavaScript Object Notation format into a Spark DataFrame.
spark_read_json(
sc,
name = NULL,
path = name,
options = list(),
repartition = 0,
memory = TRUE,
overwrite = TRUE,
columns = NULL,
...
)
A spark_connection
.
The name to assign to the newly generated table.
The path to the file. Needs to be accessible from the cluster. Supports the "hdfs://", "s3a://" and "file://" protocols.
A list of strings with additional options.
The number of partitions used to distribute the generated table. Use 0 (the default) to avoid partitioning.
Boolean; should the data be loaded eagerly into memory? (That is, should the table be cached?)
Boolean; overwrite the table with the given name if it already exists?
A vector of column names or a named vector of column types.
If specified, the elements can be "binary"
for BinaryType
,
"boolean"
for BooleanType
, "byte"
for ByteType
,
"integer"
for IntegerType
, "integer64"
for LongType
,
"double"
for DoubleType
, "character"
for StringType
,
"timestamp"
for TimestampType
and "date"
for DateType
.
Optional arguments; currently unused.
You can read data from HDFS (hdfs://
), S3 (s3a://
), as well as
the local file system (file://
).
If you are reading from a secure S3 bucket be sure to set the following in your spark-defaults.conf
spark.hadoop.fs.s3a.access.key
, spark.hadoop.fs.s3a.secret.key
or any of the methods outlined in the aws-sdk
documentation Working with AWS credentials
In order to work with the newer s3a://
protocol also set the values for spark.hadoop.fs.s3a.impl
and spark.hadoop.fs.s3a.endpoint
.
In addition, to support v4 of the S3 api be sure to pass the -Dcom.amazonaws.services.s3.enableV4
driver options
for the config key spark.driver.extraJavaOptions
For instructions on how to configure s3n://
check the hadoop documentation:
s3n authentication properties
Other Spark serialization routines:
collect_from_rds()
,
spark_insert_table()
,
spark_load_table()
,
spark_read_avro()
,
spark_read_binary()
,
spark_read_csv()
,
spark_read_delta()
,
spark_read_image()
,
spark_read_jdbc()
,
spark_read_libsvm()
,
spark_read_orc()
,
spark_read_parquet()
,
spark_read_source()
,
spark_read_table()
,
spark_read_text()
,
spark_read()
,
spark_save_table()
,
spark_write_avro()
,
spark_write_csv()
,
spark_write_delta()
,
spark_write_jdbc()
,
spark_write_json()
,
spark_write_orc()
,
spark_write_parquet()
,
spark_write_source()
,
spark_write_table()
,
spark_write_text()