Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label
ft_chisq_selector(
x,
features_col = "features",
output_col = NULL,
label_col = "label",
selector_type = "numTopFeatures",
fdr = 0.05,
fpr = 0.05,
fwe = 0.05,
num_top_features = 50,
percentile = 0.1,
uid = random_string("chisq_selector_"),
...
)
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
A spark_connection
, ml_pipeline
, or a tbl_spark
.
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula
.
The name of the output column.
Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula
.
(Spark 2.1.0+) The selector type of the ChisqSelector. Supported options: "numTopFeatures" (default), "percentile", "fpr", "fdr", "fwe".
(Spark 2.2.0+) The upper bound of the expected false discovery rate. Only applicable when selector_type = "fdr". Default value is 0.05.
(Spark 2.1.0+) The highest p-value for features to be kept. Only applicable when selector_type= "fpr". Default value is 0.05.
(Spark 2.2.0+) The upper bound of the expected family-wise error rate. Only applicable when selector_type = "fwe". Default value is 0.05.
Number of features that selector will select, ordered by ascending p-value. If the number of features is less than num_top_features
, then this will select all features. Only applicable when selector_type = "numTopFeatures". The default value of num_top_features
is 50.
(Spark 2.1.0+) Percentile of features that selector will select, ordered by statistics value descending. Only applicable when selector_type = "percentile". Default value is 0.1.
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
In the case where x
is a tbl_spark
, the estimator
fits against x
to obtain a transformer, returning a tbl_spark
.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_hashing_tf()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder_estimator()
,
ft_one_hot_encoder()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()