Maps a sequence of terms to their term frequencies using the hashing trick.
ft_hashing_tf(
x,
input_col = NULL,
output_col = NULL,
binary = FALSE,
num_features = 2^18,
uid = random_string("hashing_tf_"),
...
)
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
or a
ml_estimator
object. If it is a ml_pipeline
, it will return
a pipeline with the transformer or estimator appended to it. If a
tbl_spark
, it will return a tbl_spark
with the transformation
applied to it.
A spark_connection
, ml_pipeline
, or a tbl_spark
.
The name of the input column.
The name of the output column.
Binary toggle to control term frequency counts.
If true, all non-zero counts are set to 1. This is useful for discrete
probabilistic models that model binary events rather than integer
counts. (default = FALSE
)
Number of features. Should be greater than 0. (default = 2^18
)
A character string used to uniquely identify the feature transformer.
Optional arguments; currently unused.
Other feature transformers:
ft_binarizer()
,
ft_bucketizer()
,
ft_chisq_selector()
,
ft_count_vectorizer()
,
ft_dct()
,
ft_elementwise_product()
,
ft_feature_hasher()
,
ft_idf()
,
ft_imputer()
,
ft_index_to_string()
,
ft_interaction()
,
ft_lsh
,
ft_max_abs_scaler()
,
ft_min_max_scaler()
,
ft_ngram()
,
ft_normalizer()
,
ft_one_hot_encoder_estimator()
,
ft_one_hot_encoder()
,
ft_pca()
,
ft_polynomial_expansion()
,
ft_quantile_discretizer()
,
ft_r_formula()
,
ft_regex_tokenizer()
,
ft_robust_scaler()
,
ft_sql_transformer()
,
ft_standard_scaler()
,
ft_stop_words_remover()
,
ft_string_indexer()
,
ft_tokenizer()
,
ft_vector_assembler()
,
ft_vector_indexer()
,
ft_vector_slicer()
,
ft_word2vec()