Last chance! 50% off unlimited learning
Sale ends in
Perform regression using linear regression.
ml_linear_regression(
x,
formula = NULL,
fit_intercept = TRUE,
elastic_net_param = 0,
reg_param = 0,
max_iter = 100,
weight_col = NULL,
loss = "squaredError",
solver = "auto",
standardization = TRUE,
tol = 1e-06,
features_col = "features",
label_col = "label",
prediction_col = "prediction",
uid = random_string("linear_regression_"),
...
)
The object returned depends on the class of x
. If it is a
spark_connection
, the function returns a ml_estimator
object. If
it is a ml_pipeline
, it will return a pipeline with the predictor
appended to it. If a tbl_spark
, it will return a tbl_spark
with
the predictions added to it.
A spark_connection
, ml_pipeline
, or a tbl_spark
.
Used when x
is a tbl_spark
. R formula as a character string or a formula. This is used to transform the input dataframe before fitting, see ft_r_formula for details.
Boolean; should the model be fit with an intercept term?
ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.
Regularization parameter (aka lambda)
The maximum number of iterations to use.
The name of the column to use as weights for the model fit.
The loss function to be optimized. Supported options: "squaredError" and "huber". Default: "squaredError"
Solver algorithm for optimization.
Whether to standardize the training features before fitting the model.
Param for the convergence tolerance for iterative algorithms.
Features column name, as a length-one character vector. The column should be single vector column of numeric values. Usually this column is output by ft_r_formula
.
Label column name. The column should be a numeric column. Usually this column is output by ft_r_formula
.
Prediction column name.
A character string used to uniquely identify the ML estimator.
Optional arguments; see Details.
Other ml algorithms:
ml_aft_survival_regression()
,
ml_decision_tree_classifier()
,
ml_gbt_classifier()
,
ml_generalized_linear_regression()
,
ml_isotonic_regression()
,
ml_linear_svc()
,
ml_logistic_regression()
,
ml_multilayer_perceptron_classifier()
,
ml_naive_bayes()
,
ml_one_vs_rest()
,
ml_random_forest_classifier()
if (FALSE) {
sc <- spark_connect(master = "local")
mtcars_tbl <- sdf_copy_to(sc, mtcars, name = "mtcars_tbl", overwrite = TRUE)
partitions <- mtcars_tbl %>%
sdf_random_split(training = 0.7, test = 0.3, seed = 1111)
mtcars_training <- partitions$training
mtcars_test <- partitions$test
lm_model <- mtcars_training %>%
ml_linear_regression(mpg ~ .)
pred <- ml_predict(lm_model, mtcars_test)
ml_regression_evaluator(pred, label_col = "mpg")
}
Run the code above in your browser using DataLab