powered by
Sparsenet uses coordinate descent on the MC+ nonconvex penalty family, and fits a surface of solutions over the two-dimensional parameter space.
Rahul Mazumder, Jerome Friedman and Trevor Hastie
Maintainer: Trevor Hastie <hastie@stanford.edu>
At its simplest, provide x,y data and it returns the solution paths. There are tools for prediction, cross-validation, plotting and printing.
x,y
Mazumder, Rahul, Friedman, Jerome and Hastie, Trevor (2011) SparseNet: Coordinate Descent with Nonconvex Penalties. JASA, Vol 106(495), 1125-38, https://hastie.su.domains/public/Papers/Sparsenet/Mazumder-SparseNetCoordinateDescent-2011.pdf
x=matrix(rnorm(100*20),100,20) y=rnorm(100) fit=sparsenet(x,y) plot(fit) cvfit=cv.sparsenet(x,y) plot(cvfit)
Run the code above in your browser using DataLab