Learn R Programming

spatial (version 7.3-17)

trls.influence: Regression diagnostics for trend surfaces

Description

This function provides the basic quantities which are used in forming a variety of diagnostics for checking the quality of regression fits for trend surfaces calculated by surf.ls.

Usage

trls.influence(object)
# S3 method for trls
plot(x, border = "red", col = NA, pch = 4, cex = 0.6,
     add = FALSE, div = 8, ...)

Value

trls.influence returns a list with components:

r

raw residuals as given by residuals.trls

hii

diagonal elements of the Hat matrix

stresid

standardised residuals

Di

Cook's statistic

Arguments

object, x

Fitted trend surface model from surf.ls

div

scaling factor for influence circle radii in plot.trls

add

add influence plot to existing graphics if TRUE

border, col, pch, cex, ...

additional graphical parameters

References

Unwin, D. J., Wrigley, N. (1987) Towards a general-theory of control point distribution effects in trend surface models. Computers and Geosciences, 13, 351--355.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

See Also

Examples

Run this code
library(MASS)  # for eqscplot
data(topo, package = "MASS")
topo2 <- surf.ls(2, topo)
infl.topo2 <- trls.influence(topo2)
(cand <- as.data.frame(infl.topo2)[abs(infl.topo2$stresid) > 1.5, ])
cand.xy <- topo[as.integer(rownames(cand)), c("x", "y")]
trsurf <- trmat(topo2, 0, 6.5, 0, 6.5, 50)
eqscplot(trsurf, type = "n")
contour(trsurf, add = TRUE, col = "grey")
plot(topo2, add = TRUE, div = 3)
points(cand.xy, pch = 16, col = "orange")
text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)

Run the code above in your browser using DataLab