Creates an instance of Fiksel's double exponential pairwise interaction point process model, which can then be fitted to point pattern data.
Fiksel(r, hc=NA, kappa)
The interaction radius of the Fiksel model
The hard core distance
The rate parameter
An object of class "interact"
describing the interpoint interaction
structure of the Fiksel
process with interaction radius hc
and
rate parameter kappa
.
Fiksel (1984) introduced a pairwise interaction point process
with the following interaction function
A graph of this interaction function is shown in the Examples. The interpretation of the parameters is as follows.
a
is positive,
the process is clustered. If a
is negative, the process is
inhibited (regular).
The function ppm()
, which fits point process models to
point pattern data, requires an argument
of class "interact"
describing the interpoint interaction
structure of the model to be fitted.
The appropriate description of the Fiksel
pairwise interaction is
yielded by the function Fiksel()
. See the examples below.
The parameters Fiksel
, while the canonical
parameter ppm()
.
To estimate profilepl
. The maximum likelihood
estimator of
If the hard core distance argument hc
is missing or NA
,
it will be estimated from the data when ppm
is called.
The estimated value of hc
is the minimum nearest neighbour distance
multiplied by
See also Stoyan, Kendall and Mecke (1987) page 161.
Baddeley, A. and Turner, R. (2000) Practical maximum pseudolikelihood for spatial point patterns. Australian and New Zealand Journal of Statistics 42, 283--322.
Fiksel, T. (1984) Estimation of parameterized pair potentials of marked and non-marked Gibbsian point processes. Electronische Informationsverabeitung und Kybernetika 20, 270--278.
Stoyan, D, Kendall, W.S. and Mecke, J. (1987) Stochastic geometry and its applications. Wiley.
# NOT RUN {
Fiksel(r=1,hc=0.02, kappa=2)
# prints a sensible description of itself
data(spruces)
X <- unmark(spruces)
fit <- ppm(X ~ 1, Fiksel(r=3.5, kappa=1))
plot(fitin(fit))
# }
Run the code above in your browser using DataLab