
For a multitype point pattern,
estimate the multitype
Kdot(X, i, r=NULL, breaks=NULL, correction, ..., ratio=FALSE, from)
The observed point pattern,
from which an estimate of the multitype
The type (mark value)
of the points in X
from which distances are measured.
A character string (or something that will be converted to a
character string).
Defaults to the first level of marks(X)
.
numeric vector. The values of the argument
This argument is for internal use only.
A character vector containing any selection of the
options "border"
, "bord.modif"
,
"isotropic"
, "Ripley"
, "translate"
,
"translation"
,
"none"
or "best"
.
It specifies the edge correction(s) to be applied.
Alternatively correction="all"
selects all options.
Ignored.
Logical.
If TRUE
, the numerator and denominator of
each edge-corrected estimate will also be saved,
for use in analysing replicated point patterns.
An alternative way to specify i
.
An object of class "fv"
(see fv.object
).
Essentially a data frame containing numeric columns
the values of the argument
the theoretical value of
If ratio=TRUE then the return value also has two attributes called "numerator" and "denominator" which are "fv" objects containing the numerators and denominators of each estimate of K(r).
The argument i
is interpreted as
a level of the factor X$marks
. It is converted to a character
string if it is not already a character string.
The value i=1
does not
refer to the first level of the factor.
The reduced sample estimator of
This function Kdot
and its companions
Kcross
and Kmulti
are generalisations of the function Kest
to multitype point patterns.
A multitype point pattern is a spatial pattern of points classified into a finite number of possible ``colours'' or ``types''. In the spatstat package, a multitype pattern is represented as a single point pattern object in which the points carry marks, and the mark value attached to each point determines the type of that point.
The argument X
must be a point pattern (object of class
"ppp"
) or any data that are acceptable to as.ppp
.
It must be a marked point pattern, and the mark vector
X$marks
must be a factor.
The argument i
will be interpreted as a
level of the factor X$marks
.
If i
is missing, it defaults to the first
level of the marks factor, i = levels(X$marks)[1]
.
The ``type
An estimate of
This algorithm estimates the distribution function X
. It assumes that X
can be treated
as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through
a bounded window.
The window (which is specified in X
as Window(X)
)
may have arbitrary shape.
Biases due to edge effects are
treated in the same manner as in Kest
,
using the chosen edge correction(s).
The argument r
is the vector of values for the
distance
The pair correlation function can also be applied to the
result of Kdot
; see pcf
.
Cressie, N.A.C. Statistics for spatial data. John Wiley and Sons, 1991.
Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.
Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants' nests. Applied Statistics 32, 293--303
Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. J. Royal Statist. Soc. Ser. B 44, 406--413.
Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.
Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition. Springer Verlag, 1995.
# NOT RUN {
# Lansing woods data: 6 types of trees
woods <- lansing
# }
# NOT RUN {
Kh. <- Kdot(woods, "hickory")
# diagnostic plot for independence between hickories and other trees
plot(Kh.)
# synthetic example with two marks "a" and "b"
# pp <- runifpoispp(50)
# pp <- pp %mark% factor(sample(c("a","b"), npoints(pp), replace=TRUE))
# K <- Kdot(pp, "a")
# }
Run the code above in your browser using DataLab