Learn R Programming

spatstat.core (version 2.3-1)

methods.zclustermodel: Methods for Cluster Models

Description

Methods for the experimental class of cluster models.

Usage

# S3 method for zclustermodel
pcfmodel(model, …)

# S3 method for zclustermodel Kmodel(model, …)

# S3 method for zclustermodel intensity(X, …)

# S3 method for zclustermodel predict(object, …, locations, type = "intensity", ngrid = NULL)

# S3 method for zclustermodel print(x, …)

# S3 method for zclustermodel clusterradius(model,…,thresh=NULL, precision=FALSE)

# S3 method for zclustermodel reach(x, …, epsilon)

Arguments

model,object,x,X

Object of class "zclustermodel".

Arguments passed to other methods.

locations

Locations where prediction should be performed. A window or a point pattern.

type

Currently must equal "intensity".

ngrid

Pixel grid dimensions for prediction, if locations is a rectangle or polygon.

thresh,epsilon

Tolerance thresholds

precision

Logical value stipulating whether the precision should also be returned.

Value

Same as for other methods.

Details

Experimental.

See Also

zclustermodel

Examples

Run this code
# NOT RUN {
  m <- zclustermodel("Thomas", kappa=10, mu=5, scale=0.1)
  m2 <- zclustermodel("VarGamma", kappa=10, mu=10, scale=0.1, nu=0.7)
  m
  m2
  g <- pcfmodel(m)
  g(0.2)
  g2 <- pcfmodel(m2)
  g2(1)
  Z <- predict(m, locations=square(2))
  Z2 <- predict(m2, locations=square(1))
  varcount(m, square(1))
  varcount(m2, square(1))
# }

Run the code above in your browser using DataLab