Learn R Programming

spatstat.explore (version 3.1-0)

adaptive.density: Adaptive Estimate of Intensity of Point Pattern

Description

Computes an adaptive estimate of the intensity function of a point pattern.

Usage

adaptive.density(X, ..., method=c("voronoi","kernel", "nearest"))

Value

A pixel image (object of class "im") whose values are estimates of the intensity of X.

Arguments

X

Point pattern (object of class "ppp" or "lpp").

method

Character string specifying the estimation method

...

Additional arguments passed to densityVoronoi, densityAdaptiveKernel or nndensity.

Author

Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner r.turner@auckland.ac.nz and Ege Rubak rubak@math.aau.dk and Mehdi Moradi m2.moradi@yahoo.com.

Details

This function is an alternative to density.ppp. It computes an estimate of the intensity function of a point pattern dataset. The result is a pixel image giving the estimated intensity.

If method="voronoi" the data are passed to the function densityVoronoi which estimates the intensity using the Voronoi-Dirichlet tessellation.

If method="kernel" the data are passed to the function densityAdaptiveKernel which estimates the intensity using a variable-bandwidth kernel estimator.

If method="nearest" the data are passed to the function nndensity which estimates the intensity using the distance to the k-th nearest data point. (This is not supported when X has class "lpp".)

See Also

density.ppp, densityVoronoi, densityAdaptiveKernel, nndensity, im.object.

Examples

Run this code
  plot(adaptive.density(nztrees, 1), main="Voronoi estimate")

Run the code above in your browser using DataLab