Quadrat counting is an elementary technique for analysing spatial
point patterns. See Diggle (2003).
If X
is a point pattern, then
by default, the window containing the point pattern X
is divided into
an nx * ny
grid of rectangular tiles or `quadrats'.
(If the window is not a rectangle, then these tiles are intersected
with the window.)
The number of points of X
falling in each quadrat is
counted. These numbers are returned as a contingency table.
If xbreaks
is given, it should be a numeric vector
giving the \(x\) coordinates of the quadrat boundaries.
If it is not given, it defaults to a
sequence of nx+1
values equally spaced
over the range of \(x\) coordinates in the window Window(X)
.
Similarly if ybreaks
is given, it should be a numeric
vector giving the \(y\) coordinates of the quadrat boundaries.
It defaults to a vector of ny+1
values
equally spaced over the range of \(y\) coordinates in the window.
The lengths of xbreaks
and ybreaks
may be different.
Alternatively, quadrats of any shape may be used.
The argument tess
can be a tessellation (object of class
"tess"
) whose tiles will serve as the quadrats.
The algorithm counts the number of points of X
falling in each quadrat, and returns these counts as a
contingency table.
The return value is a table
which can be printed neatly.
The return value is also a member of the special class
"quadratcount"
. Plotting the object will display the
quadrats, annotated by their counts. See the examples.
To perform a chi-squared test based on the quadrat counts,
use quadrat.test
.
To calculate an estimate of intensity based on the quadrat counts,
use intensity.quadratcount
.
To extract the quadrats used in a quadratcount
object,
use as.tess
.
If X
is a split point pattern (object of class
"splitppp"
then quadrat counting will be performed on
each of the components point patterns, and the resulting
contingency tables will be returned in a list. This list can be
printed or plotted.
Marks attached to the points are ignored by quadratcount.ppp
.
To obtain a separate contingency table for each type of point
in a multitype point pattern,
first separate the different points using split.ppp
,
then apply quadratcount.splitppp
. See the Examples.