Plot a pixel image.
# S3 method for im
plot(x, ...,
main,
add=FALSE, clipwin=NULL,
col=NULL, valuesAreColours=NULL, log=FALSE,
ncolours=256, gamma=1,
ribbon=show.all, show.all=!add,
ribside=c("right", "left", "bottom", "top"),
ribsep=0.15, ribwid=0.05, ribn=1024,
ribscale=1, ribargs=list(), riblab=NULL, colargs=list(),
useRaster=NULL, workaround=FALSE, zap=1,
do.plot=TRUE,
addcontour=FALSE, contourargs=list()) # S3 method for im
image(x, ...,
main,
add=FALSE, clipwin=NULL,
col=NULL, valuesAreColours=NULL, log=FALSE,
ncolours=256, gamma=1,
ribbon=show.all, show.all=!add,
ribside=c("right", "left", "bottom", "top"),
ribsep=0.15, ribwid=0.05, ribn=1024,
ribscale=1, ribargs=list(), riblab=NULL, colargs=list(),
useRaster=NULL, workaround=FALSE, zap=1,
do.plot=TRUE,
addcontour=FALSE, contourargs=list())
The colour map used. An object of class "colourmap"
.
Also has an attribute "bbox"
giving a bounding box
for the plot (containing the main colour image and the
colour ribbon if plotted).
If a ribbon was plotted, there is also an attribute
"bbox.legend"
giving a bounding box for the ribbon image.
Text annotation occurs outside these bounding boxes.
The pixel image to be plotted.
An object of class "im"
(see im.object
).
Extra arguments passed to image.default
to control the plot. See Details.
Main title for the plot.
Logical value indicating whether to superimpose the image on the
existing plot (add=TRUE
)
or to initialise a new plot (add=FALSE
, the default).
Optional. A window (object of class "owin"
).
Only this subset of the image will be displayed.
Colours for displaying the pixel values.
Either a character vector of colour values,
an object of class colourmap
,
or a function
as described under Details.
Logical value. If TRUE
, the pixel values of x
are to be interpreted as colour values.
Logical value. If TRUE
, the colour map will be
evenly-spaced on a logarithmic scale.
Integer. The default number of colours in the colour map for a real-valued image.
Exponent for the gamma correction of the colours. A single positive number.
Logical flag indicating whether to display a ribbon
showing the colour map. Default is TRUE
for new plots and FALSE
for added plots.
Logical value indicating whether to display all plot elements
including the main title and colour ribbon. Default is TRUE
for new plots and FALSE
for added plots.
Character string indicating where to display the ribbon relative to the main image.
Factor controlling the space between the ribbon and the image.
Factor controlling the width of the ribbon.
Number of different values to display in the ribbon.
Rescaling factor for tick marks. The values on the numerical scale printed beside the ribbon will be multiplied by this rescaling factor.
List of additional arguments passed to
image.default
,
axis
and
axisTicks
to control the display of the ribbon and its scale axis. These may override
the ...
arguments.
Text to be plotted in the margin near the ribbon.
A character string or expression to be interpreted as text,
or a list of arguments to be passed to
mtext
.
List of additional arguments passed to
col
if it is a function.
Logical value, passed to image.default
.
Images are plotted using a bitmap raster if useRaster=TRUE
or by drawing polygons if useRaster=FALSE
.
Bitmap raster display tends to produce better results,
but is not supported on all graphics devices.
The default is to use bitmap raster display if it is supported.
Logical value, specifying whether to use a workaround to avoid a bug which occurs with some device drivers in R, in which the image has the wrong spatial orientation. See the section on Image is Displayed in Wrong Spatial Orientation below.
Noise threshold factor. A numerical value greater than or equal to 1.
If the range of pixel values is less than
zap * .Machine$double.eps
, the image will be treated as
constant. This avoids displaying images which should be constant
but contain small numerical errors.
Logical value indicating whether to actually plot the image
and colour ribbon.
Setting do.plot=FALSE
will simply return the
colour map and the bounding box that were chosen for the plot.
Logical value specifying whether to add contour lines to the image plot. The contour lines will also be drawn on the colour ribbon.
Optional list of arguments to be passed to
contour.default
to control the contour plot.
If the pixel values in x
are complex numbers,
they will be converted into four images containing the real and
imaginary parts and the modulus and argument,
and plotted side-by-side using plot.imlist
.
If spatstat.options("monochrome")
has been set to TRUE
,
then the image will be plotted in greyscale.
The colours are converted to grey scale values using
to.grey
.
The choice of colour map still has an effect, since it determines
the final grey scale values.
Monochrome display can also be achieved by
setting the graphics device parameter colormodel="grey"
when starting a new graphics device, or in a call to
ps.options
or pdf.options
.
An image plot which looks like digital noise
can be produced when the pixel values are almost exactly equal
but include a tiny amount of numerical error.
To check this, look at the numerals plotted next to the colour ribbon,
or compute diff(range(x))
, to determine whether the range
of pixel values is almost zero. The behaviour can be suppressed
by picking a larger value of the argument zap
.
The help for image.default
and rasterImage
explains that
errors may occur, or images may be rendered incorrectly, on some
devices, depending on the availability of colours and other
device-specific constraints.
If the image is not displayed at all,
try setting useRaster=FALSE
in the call to plot.im
.
If the ribbon colours are not displayed, set
ribargs=list(useRaster=FALSE)
.
Errors may occur on some graphics devices if the image is very
large. If this happens, try setting useRaster=FALSE
in the
call to plot.im
.
The error message
useRaster=TRUE can only be used with a regular grid
means that the \(x\) and \(y\) coordinates of the pixels in the
image are not perfectly equally spaced, due to numerical rounding.
This occurs with some images created by earlier versions of spatstat.
To repair the coordinates in an image X
, type
X <- as.im(X)
.
If the image is displayed in the wrong spatial orientation, and you created the image data directly, please check that you understand the spatstat convention for the spatial orientation of pixel images. The row index of the matrix of pixel values corresponds to the increasing \(y\) coordinate; the column index of the matrix corresponds to the increasing \(x\) coordinate (Baddeley, Rubak and Turner, 2015, section 3.6.3, pages 66--67).
Images can be displayed in the wrong spatial orientation
on some devices, due to a bug in the device driver. This occurs only
when the plot coordinates are reversed, that is, when
the plot was initialised with coordinate limits xlim, ylim
such that xlim[1] > xlim[2]
or ylim[1] > ylim[2]
or
both. This bug is reported to occur only when useRaster=TRUE
.
To fix this, try setting workaround=TRUE
, or if that is
unsuccessful, useRaster=FALSE
.
Adrian Baddeley Adrian.Baddeley@curtin.edu.au, Rolf Turner rolfturner@posteo.net and Ege Rubak rubak@math.aau.dk.
This is the plot
method for the class "im"
.
[It is also the image
method for "im"
.]
The pixel image x
is displayed on the current plot device,
using equal scales on the x
and y
axes.
If ribbon=TRUE
, a legend will be plotted.
The legend consists of a colour ribbon and an axis with tick-marks,
showing the correspondence between the pixel values and the colour map.
Arguments ribside, ribsep, ribwid
control the placement
of the colour ribbon.
By default, the ribbon is placed at the right of the main image.
This can be changed using the argument ribside
.
The width of the ribbon is ribwid
times the size of the pixel
image, where `size' means the larger of the width and the height.
The distance separating the ribbon and the image is ribsep
times
the size of the pixel image.
The ribbon contains the colours representing ribn
different numerical values, evenly spaced between the minimum and
maximum pixel values in the image x
, rendered according to
the chosen colour map.
The argument ribargs
controls the annotation of the
colour ribbon. It is a list of arguments to be passed to
image.default
,
axis
and
axisTicks
.
To plot the colour ribbon without the axis and
tick-marks, use ribargs=list(axes=FALSE)
.
To ensure that the numerals or symbols printed next to the colour map
are oriented horizontally, use ribargs=list(las=1)
.
To double the size of the numerals or symbols,
use ribargs=list(cex.axis=2)
.
To control the number of tick-marks, use ribargs=list(nint=N)
where N
is the desired number of intervals (so there will
be N+1
tickmarks, subject to the vagaries of R internal code).
The argument riblab
contains text that will be displayed
in the margin next to the ribbon.
The argument ribscale
is used
to rescale the numerical values printed next to the colour map,
for convenience.
For example if the pixel values in x
range between 1000 and
4000, it would be sensible to use ribscale=1/1000
so that the
colour map tickmarks would be labelled 1 to 4.
Normally the pixel values are displayed using the colours given in the
argument col
. This may be either
an explicit colour map (an object of class
"colourmap"
, created by the command colourmap
).
This is the best way to ensure
that when we plot different images, the colour maps are consistent.
a character vector or integer vector
that specifies a set of colours.
The colour mapping will be stretched to match the range of
pixel values in the image x
. The mapping of pixel values
to colours is determined as follows.
the values FALSE
and
TRUE
are mapped to the colours col[1]
and
col[2]
respectively.
The vector col
should have length 2.
the factor levels levels(x)
are mapped to the entries of col
in order. The vector
col
should have the same length as levels(x)
.
By default, the range of pixel values in x
is divided into n = length(col)
equal subintervals, which are mapped to the colours in col
.
(If col
was not specified, it defaults to a vector of 255
colours.)
Alternatively if the argument zlim
is given, it should be
a vector of length 2 specifying an interval of real numbers.
This interval will be used instead of the range of pixel
values. The interval from zlim[1]
to zlim[2]
will be
mapped to the colours in col
. This facility enables the user to
plot several images using a consistent colour map.
Alternatively if the argument breaks
is given,
then this specifies
the endpoints of the subintervals that are mapped to each colour.
This is incompatible with zlim
.
The arguments col
and zlim
or breaks
are then passed to the function image.default
.
For examples of the use of these arguments,
see image.default
.
a function
in the R language
with an argument named range
or inputs
. If col
is a function with an argument named range
,
and if the pixel values of x
are numeric values,
then the colour values will be determined by evaluating
col(range=range(x))
. The result of this evaluation
should be a character vector containing colour values, or
a "colourmap"
object. Examples of such functions
are beachcolours
and beachcolourmap
. If col
is a function with an argument named inputs
,
and if the pixel values of x
are discrete values (integer,
logical, factor or character),
then the colour values will be determined by evaluating
col(inputs=p)
where p
is the set of possible pixel
values. The result should be a character vector
containing colour values, or a "colourmap"
object.
a function
in the R language with first argument
named n
.
The colour values will be determined by evaluating
col(n)
where n
is the
number of distinct pixel values, up to a maximum of 128.
The result of this evaluation
should be a character vector containing color values.
Examples of such functions are
heat.colors
,
terrain.colors
,
topo.colors
and
cm.colors
.
If spatstat.options("monochrome")
has been set to TRUE
then all colours will be converted to grey scale values.
Other graphical parameters controlling the display of both the pixel image
and the ribbon can be passed through the ...
arguments
to the function image.default
.
A parameter is handled only if it is one of the following:
a formal argument of image.default
that is operative when add=TRUE
.
one of the parameters
"main", "asp", "sub", "axes", "xlab", "ylab"
described in plot.default
.
one of the parameters
"ann", "cex", "font", "cex.axis", "cex.lab", "cex.main", "cex.sub",
"col.axis", "col.lab", "col.main", "col.sub",
"font.axis", "font.lab", "font.main", "font.sub"
described in par
.
the argument box
, a logical value specifying whether
a box should be drawn.
Images are plotted using a bitmap raster if useRaster=TRUE
or by drawing polygons if useRaster=FALSE
.
Bitmap raster display (performed by rasterImage
)
tends to produce better results, but is not supported on all graphics devices.
The default is to use bitmap raster display if it is
supported according to dev.capabilities
.
Alternatively, the pixel values could be directly interpretable as colour values in R. That is, the pixel values could be character strings that represent colours, or values of a factor whose levels are character strings representing colours.
If valuesAreColours=TRUE
, then the pixel values will
be interpreted as colour values and displayed using these colours.
If valuesAreColours=FALSE
, then the pixel values will
not be interpreted as colour values, even if they could be.
If valuesAreColours=NULL
, the algorithm will guess
what it should do. If the argument col
is given,
the pixel values will not be interpreted as colour values. Otherwise,
if all the pixel values are strings that represent colours, then
they will be interpreted and displayed as colours.
If pixel values are interpreted as colours,
the arguments col
and ribbon
will be ignored,
and a ribbon will not be plotted.
If addcontour=TRUE
, contour lines will be superimposed on the
image. Lines will also be superimposed on the colour ribbon at the
corresponding positions.
Baddeley, A., Rubak, E. and Turner, R. (2015) Spatial Point Patterns: Methodology and Applications with R. Chapman and Hall/CRC Press.
im.object
,
colourmap
,
contour.im
,
persp.im
,
hist.im
,
image.default
,
spatstat.options
# an image
Z <- setcov(owin())
plot(Z)
plot(Z, ribside="bottom")
# stretchable colour map
plot(Z, col=rainbow)
plot(Z, col=terrain.colors(128), axes=FALSE)
# fixed colour map
tc <- colourmap(rainbow(128), breaks=seq(-1,2,length=129))
plot(Z, col=tc)
# colour map function, with argument 'range'
plot(Z, col=beachcolours, colargs=list(sealevel=0.5))
# tweaking the plot
plot(Z, main="La vie en bleu", col.main="blue", cex.main=1.5,
box=FALSE,
ribargs=list(col.axis="blue", col.ticks="blue", cex.axis=0.75))
# add axes and axis labels
plot(Z, axes=TRUE, ann=TRUE, xlab="Easting", ylab="Northing")
# add contour lines
plot(Z, addcontour=TRUE, contourargs=list(col="white", drawlabels=FALSE))
# log scale
V <- eval.im(exp(exp(Z+2))/1e4)
plot(V, log=TRUE, main="Log scale")
# it's complex
Y <- exp(Z + V * 1i)
plot(Y)
Run the code above in your browser using DataLab