Kcross(X, i=1, j=2, r=NULL, breaks=NULL, correction, ...)
X
from which distances are measured.X
to which distances are measured.r
.
Not normally invoked by the user. See the Details section."border"
, "bord.modif"
,
"isotropic"
, "Ripley"
or "translate"
.
It specifies the edge correction(s) to be applied."fv"
(see fv.object
).Essentially a data frame containing numeric columns
"border"
, "bord.modif"
,
"iso"
and/or "trans"
,
according to the selected edge corrections. These columns contain
estimates of the function $K_{ij}(r)$
obtained by the edge corrections named.i
and j
are interpreted as
levels of the factor X$marks
. Beware of the usual
trap with factors: numerical values are not
interpreted in the same way as character values. See the first example.The reduced sample estimator of $K_{ij}$ is pointwise approximately unbiased, but need not be a valid distribution function; it may not be a nondecreasing function of $r$. Its range is always within $[0,1]$.
Kcross
and its companions
Kdot
and Kmulti
are generalisations of the function Kest
to multitype point patterns. A multitype point pattern is a spatial pattern of
points classified into a finite number of possible
``colours'' or ``types''. In the X
must be a point pattern (object of class
"ppp"
) or any data that are acceptable to as.ppp
.
It must be a marked point pattern, and the mark vector
X$marks
must be a factor.
The arguments i
and j
will be interpreted as
levels of the factor X$marks
. (Warning: this means that
an integer value i=3
will be interpreted as the 3rd smallest level,
not the number 3).
The ``cross-type'' (type $i$ to type $j$)
$K$ function
of a stationary multitype point process $X$ is defined so that
$\lambda_j K_{ij}(r)$ equals the expected number of
additional random points of type $j$
within a distance $r$ of a
typical point of type $i$ in the process $X$.
Here $\lambda_j$
is the intensity of the type $j$ points,
i.e. the expected number of points of type $j$ per unit area.
The function $K_{ij}$ is determined by the
second order moment properties of $X$.
An estimate of $K_{ij}(r)$ is a useful summary statistic in exploratory data analysis of a multitype point pattern. If the process of type $i$ points were independent of the process of type $j$ points, then $K_{ij}(r)$ would equal $\pi r^2$. Deviations between the empirical $K_{ij}$ curve and the theoretical curve $\pi r^2$ may suggest dependence between the points of types $i$ and $j$.
This algorithm estimates the distribution function $K_{ij}(r)$
from the point pattern X
. It assumes that X
can be treated
as a realisation of a stationary (spatially homogeneous)
random spatial point process in the plane, observed through
a bounded window.
The window (which is specified in X
as X$window
)
may have arbitrary shape.
Biases due to edge effects are
treated in the same manner as in Kest
,
using the border correction.
The argument r
is the vector of values for the
distance $r$ at which $K_{ij}(r)$ should be evaluated.
The values of $r$ must be increasing nonnegative numbers
and the maximum $r$ value must exceed the radius of the
largest disc contained in the window.
The pair correlation function can also be applied to the
result of Kcross
; see pcf
.
Diggle, P.J. Statistical analysis of spatial point patterns. Academic Press, 1983.
Harkness, R.D and Isham, V. (1983) A bivariate spatial point pattern of ants' nests. Applied Statistics 32, 293--303 Lotwick, H. W. and Silverman, B. W. (1982). Methods for analysing spatial processes of several types of points. J. Royal Statist. Soc. Ser. B 44, 406--413.
Ripley, B.D. Statistical inference for spatial processes. Cambridge University Press, 1988.
Stoyan, D, Kendall, W.S. and Mecke, J. Stochastic geometry and its applications. 2nd edition. Springer Verlag, 1995.
Kdot
,
Kest
,
Kmulti
,
pcf
data(betacells)
# cat retina data
K01 <- Kcross(betacells, "off", "on")
plot(K01)
K10 <- Kcross(betacells, "on", "off")
# synthetic example
pp <- runifpoispp(50)
pp <- pp %mark% factor(sample(0:1, pp$n, replace=TRUE))
K <- Kcross(pp, "0", "1") # note: "0" not 0
Run the code above in your browser using DataLab