r <- matrix(c(1,2,2,1), nrow=2,ncol=2)
MultiStrauss(1:2, r)
# prints a sensible description of itself
data(betacells)
r <- 30.0 * matrix(c(1,2,2,1), nrow=2,ncol=2)
ppm(betacells, ~1, MultiStrauss(c("off","on"), r), rbord=60.0)
# fit the stationary multitype Strauss process to `betacells'
ppm(betacells, ~polynom(x,y,3), MultiStrauss(c("off","on"), r), rbord=60.0)
# fit a nonstationary Strauss process with log-cubic polynomial trend
Run the code above in your browser using DataLab