matclust.estK(X, startpar=c(kappa=1,R=1), lambda=NULL,
q = 1/4, p = 2, rmin = NULL, rmax = NULL)
"minconfit"
. There are methods for printing
and plotting this object. It contains the following main components:"fv"
)
containing the observed values of the summary statistic
(observed
) and the theoretical values of the summary
statistic computed from the fitted model parameters. The argument X
can be either
[object Object],[object Object]
The algorithm fits the Matern Cluster point process to X
,
by finding the parameters of the Matern Cluster model
which give the closest match between the
theoretical $K$ function of the Matern Cluster process
and the observed $K$ function.
For a more detailed explanation of the Method of Minimum Contrast,
see mincontrast
.
The Matern Cluster point process is described in Moller and Waagepetersen
(2003, p. 62). It is a cluster process formed by taking a
pattern of parent points, generated according to a Poisson process
with intensity $\kappa$, and around each parent point,
generating a random number of offspring points, such that the
number of offspring of each parent is a Poisson random variable with mean
$\mu$, and the locations of the offspring points of one parent
are independent and uniformly distributed inside a circle of radius
$R$ centred on the parent point.
The theoretical $K$-function of the Matern Cluster process is $$K(r) = \pi r^2 + \frac 1 \kappa h(\frac{r}{2R})$$ where $$h(z) = 2 + \frac 1 \pi [ ( 8 z^2 - 4 ) \mbox{arccos}(z) - 2 \mbox{arcsin}(z) + 4 z \sqrt{(1 - z^2)^3} - 6 z \sqrt{1 - z^2} ]$$ for $z <= 1$,="" and="" $h(z)="1$" for="" $z=""> 1$. The theoretical intensity of the Matern Cluster process is $\lambda = \kappa \mu$.=>
In this algorithm, the Method of Minimum Contrast is first used to find optimal values of the parameters $\kappa$ and $R$. Then the remaining parameter $\mu$ is inferred from the estimated intensity $\lambda$.
If the argument lambda
is provided, then this is used
as the value of $\lambda$. Otherwise, if X
is a
point pattern, then $\lambda$
will be estimated from X
.
If X
is a summary statistic and lambda
is missing,
then the intensity $\lambda$ cannot be estimated, and
the parameter $\mu$ will be returned as NA
.
The remaining arguments rmin,rmax,q,p
control the
method of minimum contrast; see mincontrast
.
The Matern Cluster process can be simulated, using rMatClust
.
Waagepetersen, R. (2006). An estimation function approach to inference for inhomogeneous Neyman-Scott processes. Submitted.
lgcp.estK
,
thomas.estK
,
mincontrast
,
Kest
,
rMatClust
to simulate the fitted model.data(redwood)
u <- matclust.estK(redwood, c(kappa=10, R=0.1))
u
plot(u)
Run the code above in your browser using DataLab