# an optimal matching
X <- runifpoint(20)
Y <- runifpoint(20)
m.opt <- pppdist(X, Y)
summary(m.opt)
matchingdist(m.opt)
# is the same as the distance given by summary(m.opt)
# sequential nearest neighbour matching
# (go through all points of point pattern X in sequence
# and match each point with the closest point of Y that is
# still unmatched)
am <- matrix(0, 20, 20)
h <- matrix(c(1:20, rep(0,20)), 20, 2)
h[1,2] = nncross(X[1],Y)[1,2]
for (i in 2:20) {
nn <- nncross(X[i],Y[-h[1:(i-1),2]])[1,2]
h[i,2] <- ((1:20)[-h[1:(i-1),2]])[nn]
}
am[h] <- 1
m.nn <- pppmatching(X, Y, am)
matchingdist(m.nn, type="spa", cutoff=1, q=1)
# is >= the distance obtained for m.opt
# in most cases strictly >
par(mfrow=c(1,2))
plot(m.opt)
plot(m.nn)
text(X$x, X$y, 1:20, pos=1, offset=0.3, cex=0.8)
Run the code above in your browser using DataLab