## S3 method for class 'pp3':
nndist(X, \dots, k=1)
"pp3"
).k
th nearest neighbour. If k = 1
(the default), the return value is a
numeric vector v
such that v[i]
is the
nearest neighbour distance for the i
th data point.
If k
is a single integer, then the return value is a
numeric vector v
such that v[i]
is the
k
th nearest neighbour distance for the
i
th data point.
If k
is a vector, then the return value is a
matrix m
such that m[i,j]
is the
k[j]
th nearest neighbour distance for the
i
th data point.
NA
value is returned if the
distance is not defined (e.g. if there is only one point
in the point pattern).k
is specified, it computes the
distance to the k
th nearest neighbour. The function nndist
is generic; this function
nndist.pp3
is the method for the class "pp3"
.
The argument k
may be a single integer, or an integer vector.
If it is a vector, then the $k$th nearest neighbour distances are
computed for each value of $k$ specified in the vector.
If there is only one point (if x
has length 1),
then a nearest neighbour distance of Inf
is returned.
If there are no points (if x
has length zero)
a numeric vector of length zero is returned.
To identify which point is the nearest neighbour of a given point,
use nnwhich
.
To use the nearest neighbour distances for statistical inference,
it is often advisable to use the edge-corrected empirical distribution,
computed by G3est
.
To find the nearest neighbour distances from one point pattern
to another point pattern, use nncross
.
nndist
,
pairdist
,
G3est
,
nnwhich
X <- runifpoint3(40)
# nearest neighbours
d <- nndist(X)
# second nearest neighbours
d2 <- nndist(X, k=2)
# first, second and third nearest
d1to3 <- nndist(X, k=1:3)
Run the code above in your browser using DataLab