Learn R Programming

spatstat (version 1.23-1)

pppdist: Distance Between Two Point Patterns

Description

Given two point patterns, find the distance between them based on optimal point matching.

Usage

pppdist(X, Y, type = "spa", cutoff = 1, q = 1, matching = TRUE,
    ccode = TRUE, precision = NULL, approximation = 10,
    show.rprimal = FALSE, timelag = 0)

Arguments

X,Y
Two point patterns (objects of class "ppp").
type
A character string giving the type of distance to be computed. One of "spa" (default), "ace" or "mat", indicating whether the algorithm should find the optimal matching based on "subpattern assignment", "
cutoff
The value $> 0$ at which interpoint distances are cut off.
q
The order of the average that is applied to the interpoint distances. May be Inf, in which case the maximum of the interpoint distances is taken.
matching
Logical. Whether to return the optimal matching or only the associated distance.
ccode
Logical. If FALSE, Rcode is used which allows for higher precision, but is much slower.
precision
Index controlling accuracy of algorithm. The q-th powers of interpoint distances will be rounded to the nearest multiple of 10^(-precision). There is a sensible default which depends on ccode.
approximation
If q = Inf, compute distance based on the optimal matching for the corresponding distance of order approximation. Can be Inf, but this makes computations extremely slow.
show.rprimal
Logical. Whether to display a plot showing the iterative solution of the restricted primal problem.
timelag
Time lag, in seconds, between successive displays of the iterative solution of the restricted primal problem.

Value

  • Normally an object of class pppmatching that contains detailed information about the parameters used and the resulting distance. See pppmatching.object for details. If matching = FALSE, only the numerical value of the distance is returned.

Details

Computes the distance between point patterns X and Y based on finding the matching between them which minimizes the average of the distances between matched points (if q=1), the maximum distance between matched points (if q=Inf), and in general the q-th order average (i.e. the 1/qth power of the sum of the qth powers) of the distances between matched points. Distances between matched points are Euclidean distances cut off at the value of cutoff.

The parameter type controls the behaviour of the algorithm if the cardinalities of the point patterns are different. For the type "spa" (subpattern assignment) the subpattern of the point pattern with the larger cardinality $n$ that is closest to the point pattern with the smaller cardinality $m$ is determined; then the q-th order average is taken over $n$ values: the $m$ distances of matched points and $n-m$ "penalty distances" of value cutoff for the unmatched points. For the type "ace" (assignment only if cardinalities equal) the matching is empty and the distance returned is equal to cutoff if the cardinalities differ. For the type "mat" (mass transfer) each point pattern is assumed to have total mass $m$ (= the smaller cardinality) distributed evenly among its points; the algorithm finds then the "mass transfer plan" that minimizes the q-th order weighted average of the distances, where the weights are given by the transferred mass divided by $m$. The result is a fractional matching (each match of two points has a weight in $(0,1]$) with the minimized quantity as the associated distance. The computations for all three types rely heavily on a specialized primal-dual algorithm (described in Luenberger (2003), Section 5.9) for Hitchcock's problem of optimal transport of a product from a number of suppliers to a number of (e.g. vending) locations. The C implementation used by default can handle patterns with a few hundreds of points, but should not be used with thousands of points. By setting show.rprimal = TRUE, some insight in the working of the algorithm can be gained. For moderate and large values of q there can be numerical issues based on the fact that the q-th powers of distances are taken and some positive values enter the optimization algorithm as zeroes because they are too small in comparison with the larger values. In this case the number of zeroes introduced is given in a warning message, and it is possible then that the matching obtained is not optimal and the associated distance is only a strict upper bound of the true distance. As a general guideline (which can be very wrong in special situations) a small number of zeroes (up to about 50 percent of the smaller point pattern cardinality $m$) usually still results in the right matching, and the number can even be quite a bit higher and usually still provides a highly accurate upper bound for the distance. These numerical problems can be reduced by enforcing (much slower) Rcode via the argument ccode = FALSE.

For q = Inf there is no fast algorithm available, which is why approximation is normally used: for finding the optimal matching, q is set to the value of approximation. The resulting distance is still given as the maximum rather than the q-th order average in the corresponding distance computation. If approximation = Inf, approximation is suppressed and a very inefficient exhaustive search for the best matching is performed.

The value of precision should normally not be supplied by the user. If ccode = TRUE, this value is preset to the highest exponent of 10 that the C code still can handle (usually $9$). If ccode = FALSE, the value is preset according to q (usually $15$ if q is small), which can sometimes be changed to obtain less severe warning messages.

References

Hitchcock F.L. (1941) The distribution of a product from several sources to numerous localities. J. Math. Physics 20, 224--230.

Luenberger D.G. (2003). Linear and nonlinear programming. Second edition. Kluwer.

Schuhmacher, D. and Xia, A. (2008) A new metric between distributions of point processes. Advances in Applied Probability 40, 651--672

Schuhmacher, D., Vo, B.-T. and Vo, B.-N. (2008) A consistent metric for performance evaluation of multi-object filters. IEEE Transactions on Signal Processing 56, 3447--3457.

See Also

pppmatching.object matchingdist

Examples

Run this code
# equal cardinalities
  X <- runifpoint(100)
  Y <- runifpoint(100)
  m <- pppdist(X, Y)
  m
  plot(m)
  
  # differing cardinalities
  X <- runifpoint(14)
  Y <- runifpoint(10)
  m1 <- pppdist(X, Y, type="spa")
  m2 <- pppdist(X, Y, type="ace")
  m3 <- pppdist(X, Y, type="mat")
  summary(m1)
  summary(m2)
  summary(m3)
  m1$matrix
  m2$matrix
  m3$matrix

  # q = Inf
  X <- runifpoint(10)
  Y <- runifpoint(10)
  mx1 <- pppdist(X, Y, q=Inf)$matrix
  mx2 <- pppdist(X, Y, q=Inf, ccode=FALSE, approximation=50)$matrix
  mx3 <- pppdist(X, Y, q=Inf, approximation=Inf)$matrix
  ((mx1 == mx2) && (mx2 == mx3))
       # TRUE if approximations are good

Run the code above in your browser using DataLab