nr <- 1e5
nv <- 5000
ns <- 200
<testonly>nr <- 10
nv <- 5
ns <- 20
oldopt <- spatstat.options()
spatstat.options(expand=1.1)</testonly>
set.seed(961018)
# Strauss process.
mod01 <- list(cif="strauss",par=list(beta=2,gamma=0.2,r=0.7),
w=c(0,10,0,10))
X1.strauss <- rmh(model=mod01,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Strauss process, conditioning on n = 80:
X2.strauss <- rmh(model=mod01,start=list(n.start=ns),
control=list(p=1,nrep=nr,nverb=nv))
<testonly>X1.strauss <- rmh(model=mod01,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv), track=TRUE)
X2.strauss <- rmh(model=mod01,start=list(n.start=ns),
control=list(p=1,nrep=nr,nverb=nv), track=TRUE)</testonly>
# Hard core process:
mod02 <- list(cif="hardcore",par=list(beta=2,hc=0.7),w=c(0,10,0,10))
X3.hardcore <- rmh(model=mod02,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Strauss process equal to pure hardcore:
mod02s <- list(cif="strauss",par=list(beta=2,gamma=0,r=0.7),w=c(0,10,0,10))
X3.strauss <- rmh(model=mod02s,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Strauss process in a polygonal window.
x <- c(0.55,0.68,0.75,0.58,0.39,0.37,0.19,0.26,0.42)
y <- c(0.20,0.27,0.68,0.99,0.80,0.61,0.45,0.28,0.33)
mod03 <- list(cif="strauss",par=list(beta=2000,gamma=0.6,r=0.07),
w=owin(poly=list(x=x,y=y)))
X4.strauss <- rmh(model=mod03,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Strauss process in a polygonal window, conditioning on n = 80.
X5.strauss <- rmh(model=mod03,start=list(n.start=ns),
control=list(p=1,nrep=nr,nverb=nv))
# Strauss process, starting off from X4.strauss, but with the
# polygonal window replace by a rectangular one. At the end,
# the generated pattern is clipped to the original polygonal window.
xxx <- X4.strauss
xxx$window <- as.owin(c(0,1,0,1))
X6.strauss <- rmh(model=mod03,start=list(x.start=xxx),
control=list(nrep=nr,nverb=nv))
# Strauss with hardcore:
mod04 <- list(cif="straush",par=list(beta=2,gamma=0.2,r=0.7,hc=0.3),
w=c(0,10,0,10))
X1.straush <- rmh(model=mod04,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Another Strauss with hardcore (with a perhaps surprising result):
mod05 <- list(cif="straush",par=list(beta=80,gamma=0.36,r=45,hc=2.5),
w=c(0,250,0,250))
X2.straush <- rmh(model=mod05,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Pure hardcore (identical to X3.strauss).
mod06 <- list(cif="straush",par=list(beta=2,gamma=1,r=1,hc=0.7),
w=c(0,10,0,10))
X3.straush <- rmh(model=mod06,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Soft core:
w <- c(0,10,0,10)
mod07 <- list(cif="sftcr",par=list(beta=0.8,sigma=0.1,kappa=0.5),
w=c(0,10,0,10))
X.sftcr <- rmh(model=mod07,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Area-interaction process:
mod42 <- rmhmodel(cif="areaint",par=list(beta=2,eta=1.6,r=0.7),
w=c(0,10,0,10))
X.area <- rmh(model=mod42,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Multitype Strauss:
beta <- c(0.027,0.008)
gmma <- matrix(c(0.43,0.98,0.98,0.36),2,2)
r <- matrix(c(45,45,45,45),2,2)
mod08 <- list(cif="straussm",par=list(beta=beta,gamma=gmma,radii=r),
w=c(0,250,0,250))
X1.straussm <- rmh(model=mod08,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))
# Multitype Strauss conditioning upon the total number
# of points being 80:
X2.straussm <- rmh(model=mod08,start=list(n.start=ns),
control=list(p=1,ptypes=c(0.75,0.25),nrep=nr,
nverb=nv))
# Conditioning upon the number of points of type 1 being 60
# and the number of points of type 2 being 20:
X3.straussm <- rmh(model=mod08,start=list(n.start=c(60,20)),
control=list(fixall=TRUE,p=1,ptypes=c(0.75,0.25),
nrep=nr,nverb=nv))
# Multitype Strauss hardcore:
rhc <- matrix(c(9.1,5.0,5.0,2.5),2,2)
mod09 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=r,hradii=rhc),w=c(0,250,0,250))
X.straushm <- rmh(model=mod09,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),nrep=nr,nverb=nv))
# Multitype Strauss hardcore with trends for each type:
beta <- c(0.27,0.08)
tr3 <- function(x,y){x <- x/250; y <- y/250;
exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend
tr4 <- function(x,y){x <- x/250; y <- y/250;
exp(-0.6*x+0.5*y)}
# log linear trend
mod10 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=r,hradii=rhc),w=c(0,250,0,250),
trend=list(tr3,tr4))
X1.straushm.trend <- rmh(model=mod10,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),
nrep=nr,nverb=nv))
# Multitype Strauss hardcore with trends for each type, given as images:
bigwin <- square(250)
i1 <- as.im(tr3, bigwin)
i2 <- as.im(tr4, bigwin)
mod11 <- list(cif="straushm",par=list(beta=beta,gamma=gmma,
iradii=r,hradii=rhc),w=bigwin,
trend=list(i1,i2))
X2.straushm.trend <- rmh(model=mod11,start=list(n.start=ns),
control=list(ptypes=c(0.75,0.25),expand=1,
nrep=nr,nverb=nv))
# Diggle, Gates, and Stibbard:
mod12 <- list(cif="dgs",par=list(beta=3600,rho=0.08),w=c(0,1,0,1))
X.dgs <- rmh(model=mod12,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Diggle-Gratton:
mod13 <- list(cif="diggra",
par=list(beta=1800,kappa=3,delta=0.02,rho=0.04),
w=square(1))
X.diggra <- rmh(model=mod13,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Fiksel:
modFik <- list(cif="fiksel",
par=list(beta=180,r=0.15,hc=0.07,kappa=2,a= -1.0),
w=square(1))
X.diggra <- rmh(model=modFik,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Geyer:
mod14 <- list(cif="geyer",par=list(beta=1.25,gamma=1.6,r=0.2,sat=4.5),
w=c(0,10,0,10))
X1.geyer <- rmh(model=mod14,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Geyer; same as a Strauss process with parameters
# (beta=2.25,gamma=0.16,r=0.7):
mod15 <- list(cif="geyer",par=list(beta=2.25,gamma=0.4,r=0.7,sat=10000),
w=c(0,10,0,10))
X2.geyer <- rmh(model=mod15,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
mod16 <- list(cif="geyer",par=list(beta=8.1,gamma=2.2,r=0.08,sat=3))
data(redwood)
X3.geyer <- rmh(model=mod16,start=list(x.start=redwood),
control=list(periodic=TRUE,nrep=nr,nverb=nv))
# Geyer, starting from the redwood data set, simulating
# on a torus, and conditioning on n:
X4.geyer <- rmh(model=mod16,start=list(x.start=redwood),
control=list(p=1,periodic=TRUE,nrep=nr,nverb=nv))
# Lookup (interaction function h_2 from page 76, Diggle (2003)):
r <- seq(from=0,to=0.2,length=101)[-1] # Drop 0.
h <- 20*(r-0.05)
h[r<0.05] <- 0
h[r>0.10] <- 1
mod17 <- list(cif="lookup",par=list(beta=4000,h=h,r=r),w=c(0,1,0,1))
X.lookup <- rmh(model=mod17,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Strauss with trend
tr <- function(x,y){x <- x/250; y <- y/250;
exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
beta <- 0.3
gmma <- 0.5
r <- 45
mod17 <- list(cif="strauss",par=list(beta=beta,gamma=gmma,r=r),
w=square(1), trend=tr3)
X1.strauss.trend <- rmh(model=mod17,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Baddeley-Geyer
r <- seq(0,0.2,length=8)[-1]
gmma <- c(0.5,0.6,0.7,0.8,0.7,0.6,0.5)
mod18 <- list(cif="badgey",par=list(beta=4000, gamma=gmma,r=r,sat=5),
w=square(1))
X1.badgey <- rmh(model=mod18,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
mod19 <- list(cif="badgey",
par=list(beta=4000, gamma=gmma,r=r,sat=1e4),
w=square(1))
set.seed(1329)
X2.badgey <- rmh(model=mod18,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Check:
h <- ((prod(gmma)/cumprod(c(1,gmma)))[-8])^2
hs <- stepfun(r,c(h,1))
mod20 <- list(cif="lookup",par=list(beta=4000,h=hs),w=square(1))
set.seed(1329)
X.check <- rmh(model=mod20,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# X2.badgey and X.check will be identical.
mod21 <- list(cif="badgey",par=list(beta=300,gamma=c(1,0.4,1),
r=c(0.035,0.07,0.14),sat=5), w=square(1))
X3.badgey <- rmh(model=mod21,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Same result as Geyer model with beta=300, gamma=0.4, r=0.07,
# sat = 5 (if seeds and control parameters are the same)
# Or more simply:
mod22 <- list(cif="badgey",
par=list(beta=300,gamma=0.4,r=0.07, sat=5),
w=square(1))
X4.badgey <- rmh(model=mod22,start=list(n.start=ns),
control=list(nrep=nr,nverb=nv))
# Same again --- i.e. the BadGey model includes the Geyer model.
# Illustrating scalability.
M1 <- rmhmodel(cif="strauss",par=list(beta=60,gamma=0.5,r=0.04),w=owin())
set.seed(496)
X1 <- rmh(model=M1,start=list(n.start=300))
M2 <- rmhmodel(cif="strauss",par=list(beta=0.6,gamma=0.5,r=0.4),
w=owin(c(0,10),c(0,10)))
set.seed(496)
X2 <- rmh(model=M2,start=list(n.start=300))
chk <- affine(X1,mat=diag(c(10,10)))
all.equal(chk,X2,check.attribute=FALSE)
# Under the default spatstat options the foregoing all.equal()
# will yield TRUE. Setting spatstat.options(scalable=FALSE) and
# re-running the code will reveal differences between X1 and X2.
<testonly>spatstat.options(oldopt)</testonly>
Run the code above in your browser using DataLab