Learn R Programming

spatstat (version 1.31-3)

Lcross: Multitype L-function (cross-type)

Description

Calculates an estimate of the cross-type L-function for a multitype point pattern.

Usage

Lcross(X, i, j, ...)

Arguments

X
The observed point pattern, from which an estimate of the cross-type $L$ function $L_{ij}(r)$ will be computed. It must be a multitype point pattern (a marked point pattern whose marks are a factor). See under Details.
i
The type (mark value) of the points in X from which distances are measured. A character string (or something that will be converted to a character string). Defaults to the first level of marks(X).
j
The type (mark value) of the points in X to which distances are measured. A character string (or something that will be converted to a character string). Defaults to the second level of marks(X).
...
Arguments passed to Kcross.

Value

  • An object of class "fv", see fv.object, which can be plotted directly using plot.fv.

    Essentially a data frame containing columns

  • rthe vector of values of the argument $r$ at which the function $L_{ij}$ has been estimated
  • theothe theoretical value $L_{ij}(r) = r$ for a stationary Poisson process
  • together with columns named "border", "bord.modif", "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $L_{ij}$ obtained by the edge corrections named.

Details

The cross-type L-function is a transformation of the cross-type K-function, $$L_{ij}(r) = \sqrt{\frac{K_{ij}(r)}{\pi}}$$ where $K_{ij}(r)$ is the cross-type K-function from type i to type j. See Kcross for information about the cross-type K-function.

The command Lcross first calls Kcross to compute the estimate of the cross-type K-function, and then applies the square root transformation.

For a marked point pattern in which the points of type i are independent of the points of type j, the theoretical value of the L-function is $L_{ij}(r) = r$. The square root also has the effect of stabilising the variance of the estimator, so that $L_{ij}$ is more appropriate for use in simulation envelopes and hypothesis tests.

See Also

Kcross, Ldot, Lest

Examples

Run this code
data(amacrine)
 L <- Lcross(amacrine, "off", "on")
 plot(L)

Run the code above in your browser using DataLab