ppm(nztrees)
# fit the stationary Poisson process
# to point pattern 'nztrees'
Q <- quadscheme(nztrees)
ppm(Q)
# equivalent.
ppm(nztrees, nd=128)
<testonly>ppm(nztrees, nd=16)</testonly>
fit1 <- ppm(nztrees, ~ x)
# fit the nonstationary Poisson process
# with intensity function lambda(x,y) = exp(a + bx)
# where x,y are the Cartesian coordinates
# and a,b are parameters to be estimated
fit1
coef(fit1)
coef(summary(fit1))
ppm(nztrees, ~ polynom(x,2))
<testonly>ppm(nztrees, ~ polynom(x,2), nd=16)</testonly>
# fit the nonstationary Poisson process
# with intensity function lambda(x,y) = exp(a + bx + cx^2)
library(splines)
ppm(nztrees, ~ bs(x,df=3))
# WARNING: do not use predict.ppm() on this result
# Fits the nonstationary Poisson process
# with intensity function lambda(x,y) = exp(B(x))
# where B is a B-spline with df = 3
ppm(nztrees, ~1, Strauss(r=10), rbord=10)
<testonly>ppm(nztrees, ~1, Strauss(r=10), rbord=10, nd=16)</testonly>
# Fit the stationary Strauss process with interaction range r=10
# using the border method with margin rbord=10
ppm(nztrees, ~ x, Strauss(13), correction="periodic")
<testonly>ppm(nztrees, ~ x, Strauss(13), correction="periodic", nd=16)</testonly>
# Fit the nonstationary Strauss process with interaction range r=13
# and exp(first order potential) = activity = beta(x,y) = exp(a+bx)
# using the periodic correction.
# Huang-Ogata fit:
ppm(nztrees, ~1, Strauss(r=10), method="ho")
<testonly>ppm(nztrees, ~1, Strauss(r=10), method="ho", nd=16, nsim=10)</testonly>
# COVARIATES
#
X <- rpoispp(42)
weirdfunction <- function(x,y){ 10 * x^2 + 5 * sin(10 * y) }
#
# (a) covariate values as function
ppm(X, ~ y + Z, covariates=list(Z=weirdfunction))
#
# (b) covariate values in pixel image
Zimage <- as.im(weirdfunction, unit.square())
ppm(X, ~ y + Z, covariates=list(Z=Zimage))
#
# (c) covariate values in data frame
Q <- quadscheme(X)
xQ <- x.quad(Q)
yQ <- y.quad(Q)
Zvalues <- weirdfunction(xQ,yQ)
ppm(Q, ~ y + Z, covariates=data.frame(Z=Zvalues))
# Note Q not X
# COVARIATE FUNCTION WITH EXTRA ARGUMENTS
#
f <- function(x,y,a){ y - a }
ppm(X, ~x + f, covariates=list(f=f), covfunargs=list(a=1/2))
## MULTITYPE POINT PROCESSES ###
# fit stationary marked Poisson process
# with different intensity for each species
ppm(lansing, ~ marks, Poisson())
<testonly>a <- ppm(amacrine, ~ marks, Poisson(), nd=16)</testonly>
# fit nonstationary marked Poisson process
# with different log-cubic trend for each species
ppm(lansing, ~ marks * polynom(x,y,3), Poisson())
<testonly>ppm(amacrine, ~ marks * polynom(x,y,2), Poisson(), nd=16)</testonly>
Run the code above in your browser using DataLab