dppm(formula, family, data=NULL, ..., startpar = NULL, method = c("mincon", "clik2", "palm"), weightfun=NULL, control=list(), algorithm="Nelder-Mead", statistic="K", statargs=list(), rmax = NULL, covfunargs=NULL, use.gam=FALSE, nd=NULL, eps=NULL)
formula
in the R language
specifying the data (on the left side) and the
form of the model to be fitted (on the right side).
For a stationary model it suffices to provide a point pattern
without a formula. See Details.
dppGauss
, dppMatern
,
dppCauchy
, dppBessel
or dppPowerExp
.
Alternatively a character string giving the name
of a family function, or the result of calling one of the
family functions. See Details.
"mincon"
for minimum contrast,
"clik2"
for second order composite likelihood,
or "palm"
for Palm likelihood.
Partially matched.
function
in the R language.
See Details.
optim
.
"K"
or "pcf"
.
statistic
. See Details.
ppm
when fitting the intensity.
"dppm"
representing the fitted model.
There are methods for printing, plotting, predicting and simulating
objects of this class.
The model to be fitted is specified by the arguments
formula
and family
.
The argument formula
should normally be a formula
in the
R language. The left hand side of the formula
specifies the point pattern dataset to which the model should be fitted.
This should be a single argument which may be a point pattern
(object of class "ppp"
) or a quadrature scheme
(object of class "quad"
). The right hand side of the formula is called
the trend
and specifies the form of the
logarithm of the intensity of the process.
Alternatively the argument formula
may be a point pattern or quadrature
scheme, and the trend formula is taken to be ~1
.
The argument family
specifies the family of point processes
to be used in the model.
It is typically one of the family functions
dppGauss
, dppMatern
,
dppCauchy
, dppBessel
or dppPowerExp
.
Alternatively it may be a character string giving the name
of a family function, or the result of calling one of the
family functions. A family function belongs to class
"detpointprocfamilyfun"
. The result of calling a family
function is a point process family, which belongs to class
"detpointprocfamily"
.
The algorithm first estimates the intensity function
of the point process using ppm
.
If the trend formula is ~1
(the default if a point pattern or quadrature
scheme is given rather than a "formula"
)
then the model is homogeneous. The algorithm begins by
estimating the intensity as the number of points divided by
the area of the window.
Otherwise, the model is inhomogeneous.
The algorithm begins by fitting a Poisson process with log intensity
of the form specified by the formula trend
.
(See ppm
for further explanation).
The interaction parameters of the model are then fitted either by minimum contrast estimation, or by maximum composite likelihood.
In all three methods, the optimisation is performed by the generic
optimisation algorithm optim
.
The behaviour of this algorithm can be modified using the
argument control
.
Useful control arguments include
trace
, maxit
and abstol
(documented in the help for optim
).
Finally, it is also possible to fix any parameters desired before the
optimisation by specifying them as name=value
in the call to the family function. See Examples.
Guan, Y. (2006) A composite likelihood approach in fitting spatial point process models. Journal of the American Statistical Association 101, 1502--1512.
Tanaka, U. and Ogata, Y. and Stoyan, D. (2008) Parameter estimation and model selection for Neyman-Scott point processes. Biometrical Journal 50, 43--57.
Waagepetersen, R. (2007) An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63, 252--258.
dppm
objects:
plot.dppm
,
fitted.dppm
,
predict.dppm
,
simulate.dppm
,
methods.dppm
,
as.ppm.dppm
,
Kmodel.dppm
,
pcfmodel.dppm
. Minimum contrast fitting algorithm:
mincontrast
.
Deterimantal point process models:
dppGauss
,
dppMatern
,
dppCauchy
,
dppBessel
,
dppPowerExp
,
Summary statistics:
Kest
,
Kinhom
,
pcf
,
pcfinhom
.
See also ppm
jpines <- residualspaper$Fig1
dppm(jpines ~ 1, dppGauss)
dppm(jpines ~ 1, dppGauss, method="c")
dppm(jpines ~ 1, dppGauss, method="p")
# Fixing the intensity to lambda=2 rather than the Poisson MLE 2.04:
dppm(jpines ~ 1, dppGauss(lambda=2))
if(interactive()) {
# The following is quite slow (using K-function)
dppm(jpines ~ x, dppMatern)
}
# much faster using pair correlation function
dppm(jpines ~ x, dppMatern, statistic="pcf", statargs=list(stoyan=0.2))
# Fixing the Matern shape parameter to nu=2 rather than estimating it:
dppm(jpines ~ x, dppMatern(nu=2))
Run the code above in your browser using DataLab