Learn R Programming

spatstat (version 1.48-0)

markconnect: Mark Connection Function

Description

Estimate the marked connection function of a multitype point pattern.

Usage

markconnect(X, i, j, r=NULL, correction=c("isotropic", "Ripley", "translate"), method="density", ..., normalise=FALSE)

Arguments

X
The observed point pattern. An object of class "ppp" or something acceptable to as.ppp.
i
Number or character string identifying the type (mark value) of the points in X from which distances are measured.
j
Number or character string identifying the type (mark value) of the points in X to which distances are measured.
r
numeric vector. The values of the argument $r$ at which the mark connection function $p[ij](r)$ should be evaluated. There is a sensible default.
correction
A character vector containing any selection of the options "isotropic", "Ripley" or "translate". It specifies the edge correction(s) to be applied.
method
A character vector indicating the user's choice of density estimation technique to be used. Options are "density", "loess", "sm" and "smrep".
...
Arguments passed to the density estimation routine (density, loess or sm.density) selected by method.
normalise
If TRUE, normalise the pair connection function by dividing it by $p[i]*p[j]$, the estimated probability that randomly-selected points will have marks $i$ and $j$.

Value

An object of class "fv" (see fv.object).Essentially a data frame containing numeric columnstogether with a column or columns named "iso" and/or "trans", according to the selected edge corrections. These columns contain estimates of the function $p[i,j](r)$ obtained by the edge corrections named.

Details

The mark connection function $p[i,j](r)$ of a multitype point process $X$ is a measure of the dependence between the types of two points of the process a distance $r$ apart.

Informally $p[i,j](r)$ is defined as the conditional probability, given that there is a point of the process at a location $u$ and another point of the process at a location $v$ separated by a distance $||u-v|| = r$, that the first point is of type $i$ and the second point is of type $j$. See Stoyan and Stoyan (1994).

If the marks attached to the points of X are independent and identically distributed, then $p[i,j](r) = p[i]p[j]$ where $p[i]$ denotes the probability that a point is of type $i$. Values larger than this, $p[i,j](r) > p[i]p[j]$, indicate positive association between the two types, while smaller values indicate negative association.

The argument X must be a point pattern (object of class "ppp") or any data that are acceptable to as.ppp. It must be a multitype point pattern (a marked point pattern with factor-valued marks).

The argument r is the vector of values for the distance $r$ at which $p[i,j](r)$ is estimated. There is a sensible default.

This algorithm assumes that X can be treated as a realisation of a stationary (spatially homogeneous) random spatial point process in the plane, observed through a bounded window. The window (which is specified in X as Window(X)) may have arbitrary shape.

Biases due to edge effects are treated in the same manner as in Kest. The edge corrections implemented here are

Note that the estimator assumes the process is stationary (spatially homogeneous).

The mark connection function is estimated using density estimation techniques. The user can choose between

References

Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.

See Also

Multitype pair correlation pcfcross and multitype K-functions Kcross, Kdot.

Use alltypes to compute the mark connection functions between all pairs of types.

Mark correlation markcorr and mark variogram markvario for numeric-valued marks.

Examples

Run this code
    # Hughes' amacrine data
    # Cells marked as 'on'/'off'
    data(amacrine)
    M <- markconnect(amacrine, "on", "off")
    plot(M)

    # Compute for all pairs of types at once
    plot(alltypes(amacrine, markconnect))

Run the code above in your browser using DataLab