"pcf"(X, ..., method="c")
"fasp"
).
smooth.spline
.
"a"
, "b"
, "c"
or "d"
indicating the
method for deriving the pair correlation function from the
K
function.
"fasp"
,
see fasp.object
)
representing an array of pair correlation functions.
This can be thought of as a matrix Y
each of whose entries
Y[i,j]
is a function value table (class "fv"
)
representing the pair correlation function between
points of type i
and points of type j
.
Kest
for information
about $K(r)$. For a stationary Poisson process, the
pair correlation function is identically equal to 1. Values
$g(r) < 1$ suggest inhibition between points;
values greater than 1 suggest clustering. We also apply the same definition to
other variants of the classical $K$ function,
such as the multitype $K$ functions
(see Kcross
, Kdot
) and the
inhomogeneous $K$ function (see Kinhom
).
For all these variants, the benchmark value of
$K(r) = pi * r^2$ corresponds to
$g(r) = 1$.
This routine computes an estimate of $g(r)$
from an array of estimates of $K(r)$ or its variants,
using smoothing splines to approximate the derivatives.
It is a method for the generic function pcf
.
The argument X
should be
a function array (object of class "fasp"
,
see fasp.object
)
containing several estimates of $K$ functions.
This should have been obtained from alltypes
with the argument fun="K"
.
The smoothing spline operations are performed by
smooth.spline
and predict.smooth.spline
from the modreg
library.
Four numerical methods are available:
Method "c"
seems to be the best at
suppressing variability for small values of $r$.
However it effectively constrains $g(0) = 1$.
If the point pattern seems to have inhibition at small distances,
you may wish to experiment with method "b"
which effectively
constrains $g(0)=0$. Method "a"
seems
comparatively unreliable.
Useful arguments to control the splines
include the smoothing tradeoff parameter spar
and the degrees of freedom df
. See smooth.spline
for details.
Stoyan, D. and Stoyan, H. (1994) Fractals, random shapes and point fields: methods of geometrical statistics. John Wiley and Sons.
Kest
,
Kinhom
,
Kcross
,
Kdot
,
Kmulti
,
alltypes
,
smooth.spline
,
predict.smooth.spline
# multitype point pattern
KK <- alltypes(amacrine, "K")
p <- pcf.fasp(KK, spar=0.5, method="b")
plot(p)
# strong inhibition between points of the same type
Run the code above in your browser using DataLab