# uniform bivariate Poisson process with total intensity 100 in unit square
pp <- rmpoispp(50, types=c("a","b"))
# stationary bivariate Poisson process with intensity A = 30, B = 70
pp <- rmpoispp(c(30,70), types=c("A","B"))
pp <- rmpoispp(c(30,70))
# works in any window
data(letterR)
pp <- rmpoispp(c(30,70), win=letterR, types=c("A","B"))
# inhomogeneous lambda(x,y,m)
# note argument 'm' is a factor
lam <- function(x,y,m) { 50 * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"))
# extra arguments
lam <- function(x,y,m,scal) { scal * (x^2 + y^3) * ifelse(m=="A", 2, 1)}
pp <- rmpoispp(lam, win=letterR, types=c("A","B"), scal=50)
# list of functions lambda[[i]](x,y)
lams <- list(function(x,y){50 * x^2}, function(x,y){20 * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"))
pp <- rmpoispp(lams, win=letterR)
# functions with extra arguments
lams <- list(function(x,y,scal){5 * scal * x^2},
function(x,y, scal){2 * scal * abs(y)})
pp <- rmpoispp(lams, win=letterR, types=c("A","B"), scal=10)
pp <- rmpoispp(lams, win=letterR, scal=10)
# florid example
lams <- list(function(x,y){
100*exp((6*x + 5*y - 18*x^2 + 12*x*y - 9*y^2)/6)
}
# log quadratic trend
,
function(x,y){
100*exp(-0.6*x+0.5*y)
}
# log linear trend
)
X <- rmpoispp(lams, win=unit.square(), types=c("on", "off"))
# pixel image
Z <- as.im(function(x,y){30 * (x^2 + y^3)}, letterR)
pp <- rmpoispp(Z, types=c("A","B"))
# list of pixel images
ZZ <- list(
as.im(function(x,y){20 * (x^2 + y^3)}, letterR),
as.im(function(x,y){40 * (x^3 + y^2)}, letterR))
pp <- rmpoispp(ZZ, types=c("A","B"))
pp <- rmpoispp(ZZ)
# randomising an existing point pattern
rmpoispp(intensity(amacrine), win=Window(amacrine))
Run the code above in your browser using DataLab