# NOT RUN {
redwood
# count the number of points within radius 0.2 of each point of X
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...){npoints(Y)-1})
# equivalent to:
nneighbours <- applynbd(redwood, R=0.2, function(Y, ...){npoints(Y)}, exclude=TRUE)
# compute the distance to the second nearest neighbour of each point
secondnndist <- applynbd(redwood, N = 2,
function(dists, ...){max(dists)},
exclude=TRUE)
# marked point pattern
trees <- longleaf
# }
# NOT RUN {
# compute the median of the marks of all neighbours of a point
# (see also 'markstat')
dbh.med <- applynbd(trees, R=90, exclude=TRUE,
function(Y, ...) { median(marks(Y))})
# ANIMATION explaining the definition of the K function
# (arguments `fullpicture' and 'rad' are passed to FUN)
if(interactive()) {
showoffK <- function(Y, current, dists, dranks, fullpicture,rad) {
plot(fullpicture, main="")
points(Y, cex=2)
ux <- current[["x"]]
uy <- current[["y"]]
points(ux, uy, pch="+",cex=3)
theta <- seq(0,2*pi,length=100)
polygon(ux + rad * cos(theta), uy+rad*sin(theta))
text(ux + rad/3, uy + rad/2,npoints(Y),cex=3)
if(interactive()) Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
return(npoints(Y))
}
applynbd(redwood, R=0.2, showoffK, fullpicture=redwood, rad=0.2, exclude=TRUE)
# animation explaining the definition of the G function
showoffG <- function(Y, current, dists, dranks, fullpicture) {
plot(fullpicture, main="")
points(Y, cex=2)
u <- current
points(u[1],u[2],pch="+",cex=3)
v <- c(Y$x[1],Y$y[1])
segments(u[1],u[2],v[1],v[2],lwd=2)
w <- (u + v)/2
nnd <- dists[1]
text(w[1],w[2],round(nnd,3),cex=2)
if(interactive()) Sys.sleep(if(runif(1) < 0.1) 1.5 else 0.3)
return(nnd)
}
applynbd(cells, N=1, showoffG, exclude=TRUE, fullpicture=cells)
}
# }
Run the code above in your browser using DataLab