The function connected
is generic, with methods
for pixel images (class "im"
) and windows (class "owin"
)
described here. There are also methods for tessellations
(connected.tess
), point patterns
(connected.ppp
and connected.lpp
),
and linear networks (connected.linnet
).
The functions described here compute the connected component transform
(Rosenfeld and Pfalz, 1966)
of a binary image or binary mask. The argument X
is first
converted into a pixel image with logical values. Then the algorithm
identifies the connected components (topologically-connected clumps
of pixels) in the foreground.
Two pixels belong to the same connected component if they have the value
TRUE
and if they are neighbours (in the 8-connected
sense). This rule is applied repeatedly until it terminates.
Then each connected component
contains all the pixels that can be reached by stepping from neighbour
to neighbour.
If method="C"
, the computation is performed by a compiled C language
implementation of the classical algorithm of Rosenfeld and Pfalz
(1966). If method="interpreted"
, the computation is performed
by an R implementation of the algorithm of Park et al (2000).
The result is a factor-valued image, with levels that correspond to
the connected components. The Examples show how to extract each
connected component as a separate window object.