## Crowder (1987b), Output Listing 1, trapezoidal quadrature (less accurate)
M <- 2
Ru <- 3
mu <- seq(0, 2, by=0.25)
LL <- LL2 <- rep(NA, length(mu))
for ( i in 1:length(mu) ) {
LL[i] <- round( imr.arl(M, Ru, mu[i], 1), digits=4)
LL2[i] <- round( imr.arl(M, Ru, mu[i], 1, cmode="Crowder", N=80), digits=4)
}
LL1987b <- c(18.2164, 16.3541, 12.4282, 8.7559, 6.1071, 4.3582, 3.2260, 2.4878, 1.9989)
print( data.frame(mu, LL2, LL1987b, LL) )
## Crowder (1987a), Table 1, trapezoidal quadrature (less accurate)
M <- 4
Ru <- 3
mu <- seq(0, 2, by=0.25)
LL <- rep(NA, length(mu))
for ( i in 1:length(mu) ) LL[i] <- round( imr.arl(M, Ru, mu[i], 1), digits=4)
LL1987a <- c(34.44, 34.28, 34.07, 33.81, 33.45, 32.82, 31.50, 28.85, 24.49)
print( data.frame(mu, LL1987a, LL) )
## Rigdon, Cruthis, Champ (1994), Table 1, Monte Carlo based
M <- 2.992
Ru <- 4.139
icARL <- imr.arl(M, Ru, 0, 1)
icARL1994 <- 200
print( data.frame(icARL1994, icARL) )
M <- 3.268
Ru <- 4.556
icARL <- imr.arl(M, Ru, 0, 1)
icARL1994 <- 500
print( data.frame(icARL1994, icARL) )
## ..., Table 2, Monte Carlo based
M <- 2.992
Ru <- 4.139
tau <- c(seq(1, 1.3, by=0.05), seq(1.4, 2, by=0.1))
LL <- rep(NA, length(tau))
for ( i in 1:length(tau) ) LL[i] <- round( imr.arl(M, Ru, 0, tau[i]), digits=2)
LL1994 <- c(200.54, 132.25, 90.84, 65.66, 49.35, 38.92, 31.11, 21.35, 15.47,
12.04, 9.81, 8.21, 7.03, 6.14)
print( data.frame(tau, LL1994, LL) )
## Radson, Alwan (1995), Table 2 (Monte Carlo based), half-normal, known parameter case
## two-sided (!) MR-alone (!) chart, hence the ARL results has to be decreased by 1
## Here: a large M (=12) is deployed to mimic Inf
alpha <- 0.00915
Ru <- sqrt(2) * qnorm(1-alpha/4)
Rl <- sqrt(2) * qnorm(0.5+alpha/4)
k <- 1.5 - (0:7)/10
LL <- rep(NA, length(k))
for ( i in 1:length(k) )
LL[i] <- round( imr.arl(12, Ru, 0, k[i], vsided="two", Rl=Rl), digits=2) - 1
RA1995 <- c(18.61, 24.51, 34.21, 49.74, 75.08, 113.14, 150.15, 164.54)
print( data.frame(k, RA1995, LL) )
## Amin, Ethridge (1998), Table 2, column sigma/sigma_0 = 1.00
M <- 3.27
Ru <- 4.56
#M <- 3.268
#Ru <- 4.556
mu <- seq(0, 2, by=0.25)
LL <- rep(NA, length(mu))
for ( i in 1:length(mu) ) LL[i] <- round( imr.arl(M, Ru, mu[i], 1), digits=1)
LL1998 <- c(505.3, 427.6, 276.7, 156.2, 85.0, 46.9, 26.9, 16.1, 10.1)
print( data.frame(mu, LL1998, LL) )
## ..., column sigma/sigma_0 = 1.05
for ( i in 1:length(mu) ) LL[i] <- round( imr.arl(M, Ru, mu[i], 1.05), digits=1)
LL1998 <- c(296.8, 251.6, 169.6, 101.6, 58.9, 34.5, 20.9, 13.2, 8.7)
print( data.frame(mu, LL1998, LL) )
## Acosta-Mejia, Pignatiello (2000), Table 2
## AMP utilized Markov chain approximation
## However, the MR series is not Markovian!
## MR-alone (!) chart, hence the ARL results has to be decreased by 1
## Here: a large M (=8) is deployed to mimic Inf
Ru <- 3.93
sigma <- c(1, 1.05, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.75)
LL <- rep(NA, length(sigma))
for ( i in 1:length(sigma) ) LL[i] <- round( imr.arl(8, Ru, 0, sigma[i], N=30), digits=1) - 1
AMP2000 <- c(201.0, 136.8, 97.9, 73.0, 56.3, 36.4, 25.6, 19.1, 11.0)
print( data.frame(sigma, AMP2000, LL) )
## Mark, Krehbiel (2011), Table 2, deployment of Crowder (1987b), nominal ic ARL 500
M <- c(3.09, 3.20, 3.30, 3.50, 4.00)
Ru <- c(6.00, 4.67, 4.53, 4.42, 4.36)
LL0 <- rep(NA, length(M))
for ( i in 1:length(M) ) LL0[i] <- round( imr.arl(M[i], Ru[i], 0, 1), digits=1)
print( data.frame(M, Ru, LL0) )
Run the code above in your browser using DataLab