Learn R Programming

spcosa (version 0.4-2)

spsample-methods: Spatial Sampling of Compact Strata

Description

Methods for sampling in compact strata.

Arguments

Methods

x = "CompactStratification", n = "missing", type = "missing"

samples the centroids of each stratum.

x = "CompactStratification", n = "numeric", type = "missing"

stratified simple random sampling with \(n\) samples per stratum.

x = "CompactStratificationEqualArea", n = "numeric", type = "character"

if type = "composite", stratified simple random sampling of \(n\) composites.

x = "CompactStratificationPriorPoints", n = "missing", type = "missing"

spatial infill sampling

See Also

stratify for stratification, spsample for other types of spatial sampling, and estimate for inference.

Examples

Run this code
# Note: the example below requires the 'sf'-package.
if (require(sf)) {

    # read a vector representation of the `Farmsum' field
    shpFarmsum <- as(st_read(
        dsn = system.file("maps", package = "spcosa"),
        layer = "farmsum"), "Spatial")

    # stratify `Farmsum' into 50 strata
    # NB: increase argument 'nTry' to get better results
    set.seed(314)
    myStratification <- stratify(shpFarmsum, nStrata = 50, nTry = 1)

    # sample two sampling units per stratum
    mySamplingPattern <- spsample(myStratification, n = 2)

    # plot the resulting sampling pattern on
    # top of the stratification
    plot(myStratification, mySamplingPattern)

}

Run the code above in your browser using DataLab