Learn R Programming

spdep (version 0.4-9)

sp.correlogram: Spatial correlogram

Description

Spatial correlograms for Moran's I and the autocorrelation coefficient, with print and plot helper functions.

Usage

sp.correlogram(neighbours, var, order = 1, method = "corr",
 style = "W", randomisation = TRUE, zero.policy = FALSE, spChk=NULL)
plot.spcor(x, main, ylab, ylim, ...)
print.spcor(x, p.adj.method="none", ...)

Arguments

neighbours
an object of class nb
var
a numeric vector
order
maximum lag order
method
"corr" for correlation, "I" for Moran's I
style
style can take values W, B, C, and S
randomisation
variance of I calculated under the assumption of randomisation, if FALSE normality
zero.policy
If FALSE stop with error for any empty neighbour sets, if TRUE permit the weights list to be formed with zero-length weights vectors
spChk
should the data vector names be checked against the spatial objects for identity integrity, TRUE, or FALSE, default NULL to use get.spChkOption()
x
an object from sp.correlogram() of class spcor
p.adj.method
correction method as in p.adjust
main
an overall title for the plot
ylab
a title for the y axis
ylim
the y limits of the plot
...
further arguments passed through

Value

  • returns a list of class spcor:
  • resfor "corr" a vector of values; for "I", a matrix of estimates of "I", expectations, and variances
  • method"I" or "corr"
  • cardnoslist of tables of neighbour cardinalities for the lag orders used
  • varvariable name

Details

The print function also calculates the standard deviates of Moran's I and a two-sided probability value, optionally using p.adjust to correct by the nymber of lags. The plot function plots a bar from the estimated Moran's I value to +/- twice the square root of its variance (in previous releases only once, not twice).

References

Cliff, A. D., Ord, J. K. 1981 Spatial processes, Pion, pp. 118--122, Martin, R. L., Oeppen, J. E. 1975 The identification of regional forecasting models using space-time correlation functions, Transactions of the Institute of British Geographers, 66, 95--118.

See Also

nblag, moran, p.adjust

Examples

Run this code
example(nc.sids)
ft.SID74 <- sqrt(1000)*(sqrt(nc.sids$SID74/nc.sids$BIR74) +
  sqrt((nc.sids$SID74+1)/nc.sids$BIR74))
tr.SIDS74 <- ft.SID74*sqrt(nc.sids$BIR74)
cspc <- sp.correlogram(ncCC89_nb, tr.SIDS74, order=8, method="corr",
 zero.policy=TRUE)
print(cspc)
plot(cspc)
Ispc <- sp.correlogram(ncCC89_nb, tr.SIDS74, order=8, method="I",
 zero.policy=TRUE)
print(Ispc)
print(Ispc, "bonferroni")
plot(Ispc)
drop.no.neighs <- !(1:length(ncCC89_nb) %in% which(card(ncCC89_nb) == 0))
sub.ncCC89.nb <- subset(ncCC89_nb, drop.no.neighs)
plot(sp.correlogram(sub.ncCC89.nb, subset(tr.SIDS74,  drop.no.neighs),
 order=8, method="corr"))

Run the code above in your browser using DataLab